Excellence in Research and Innovation for Humanity

International Science Index


Select areas to restrict search in scientific publication database:

1
3552
Property Aggregation and Uncertainty with Links to the Management and Determination of Critical Design Features
Abstract:
Within the domain of Systems Engineering the need to perform property aggregation to understand, analyze and manage complex systems is unequivocal. This can be seen in numerous domains such as capability analysis, Mission Essential Competencies (MEC) and Critical Design Features (CDF). Furthermore, the need to consider uncertainty propagation as well as the sensitivity of related properties within such analysis is equally as important when determining a set of critical properties within such a system. This paper describes this property breakdown in a number of domains within Systems Engineering and, within the area of CDFs, emphasizes the importance of uncertainty analysis. As part of this, a section of the paper describes possible techniques which may be used within uncertainty propagation and in conclusion an example is described utilizing one of the techniques for property and uncertainty aggregation within an aircraft system to aid the determination of Critical Design Features.
2
15728
An Archetype to Sustain Knowledge Management Systems through Intranet
Abstract:
Creation and maintenance of knowledge management systems has been recognized as an important research area. Consecutively lack of accurate results from knowledge management systems limits the organization to apply their knowledge management processes. This leads to a failure in getting the right information to the right people at the right time thus followed by a deficiency in decision making processes. An Intranet offers a powerful tool for communication and collaboration, presenting data and information, and the means that creates and shares knowledge, all in one easily accessible place. This paper proposes an archetype describing how a knowledge management system, with the support of intranet capabilities, could very much increase the accuracy of capturing, storing and retrieving knowledge based processes thereby increasing the efficiency of the system. This system will expect a critical mass of usage, by the users, for intranet to function as knowledge management systems. This prototype would lead to a design of an application that would impose creation and maintenance of an effective knowledge management system through intranet. The aim of this paper is to introduce an effective system to handle capture, store and distribute knowledge management in a form that may not lead to any failure which exists in most of the systems. The methodology used in the system would require all the employees, in the organization, to contribute the maximum to deliver the system to a successful arena. The system is still in its initial mode and thereby the authors are under the process to practically implement the ideas, as mentioned in the system, to produce satisfactory results.
3
5818
Analysis of DNA Microarray Data using Association Rules : A Selective Study
Abstract:
DNA microarrays allow the measurement of expression levels for a large number of genes, perhaps all genes of an organism, within a number of different experimental samples. It is very much important to extract biologically meaningful information from this huge amount of expression data to know the current state of the cell because most cellular processes are regulated by changes in gene expression. Association rule mining techniques are helpful to find association relationship between genes. Numerous association rule mining algorithms have been developed to analyze and associate this huge amount of gene expression data. This paper focuses on some of the popular association rule mining algorithms developed to analyze gene expression data.
4
3009
An Ontology for Knowledge Representation and Applications
Authors:
Abstract:
Ontology is a terminology which is used in artificial intelligence with different meanings. Ontology researching has an important role in computer science and practical applications, especially distributed knowledge systems. In this paper we present an ontology which is called Computational Object Knowledge Base Ontology. It has been used in designing some knowledge base systems for solving problems such as the system that supports studying knowledge and solving analytic geometry problems, the program for studying and solving problems in Plane Geometry, the knowledge system in linear algebra.
5
9202
Hand Gesture Recognition: Sign to Voice System (S2V)
Abstract:
Hand gesture is one of the typical methods used in sign language for non-verbal communication. It is most commonly used by people who have hearing or speech problems to communicate among themselves or with normal people. Various sign language systems have been developed by manufacturers around the globe but they are neither flexible nor cost-effective for the end users. This paper presents a system prototype that is able to automatically recognize sign language to help normal people to communicate more effectively with the hearing or speech impaired people. The Sign to Voice system prototype, S2V, was developed using Feed Forward Neural Network for two-sequence signs detection. Different sets of universal hand gestures were captured from video camera and utilized to train the neural network for classification purpose. The experimental results have shown that neural network has achieved satisfactory result for sign-to-voice translation.
6
9497
Text Summarization for Oil and Gas Drilling Topic
Abstract:
Information sharing and gathering are important in the rapid advancement era of technology. The existence of WWW has caused rapid growth of information explosion. Readers are overloaded with too many lengthy text documents in which they are more interested in shorter versions. Oil and gas industry could not escape from this predicament. In this paper, we develop an Automated Text Summarization System known as AutoTextSumm to extract the salient points of oil and gas drilling articles by incorporating statistical approach, keywords identification, synonym words and sentence-s position. In this study, we have conducted interviews with Petroleum Engineering experts and English Language experts to identify the list of most commonly used keywords in the oil and gas drilling domain. The system performance of AutoTextSumm is evaluated using the formulae of precision, recall and F-score. Based on the experimental results, AutoTextSumm has produced satisfactory performance with F-score of 0.81.
7
7317
Image Segmentation Based on Graph Theoretical Approach to Improve the Quality of Image Segmentation
Abstract:
Graph based image segmentation techniques are considered to be one of the most efficient segmentation techniques which are mainly used as time & space efficient methods for real time applications. How ever, there is need to focus on improving the quality of segmented images obtained from the earlier graph based methods. This paper proposes an improvement to the graph based image segmentation methods already described in the literature. We contribute to the existing method by proposing the use of a weighted Euclidean distance to calculate the edge weight which is the key element in building the graph. We also propose a slight modification of the segmentation method already described in the literature, which results in selection of more prominent edges in the graph. The experimental results show the improvement in the segmentation quality as compared to the methods that already exist, with a slight compromise in efficiency.
8
4385
Development of A Meta Description Language for Software/Hardware Cooperative Design and Verification for Model-Checking Systems
Abstract:
Model-checking tools such as Symbolic Model Verifier (SMV) and NuSMV are available for checking hardware designs. These tools can automatically check the formal legitimacy of a design. However, NuSMV is too low level for describing a complete hardware design. It is therefore necessary to translate the system definition, as designed in a language such as Verilog or VHDL, into a language such as NuSMV for validation. In this paper, we present a meta hardware description language, Melasy, that contains a code generator for existing hardware description languages (HDLs) and languages for model checking that solve this problem.
9
8967
Estimation of Skew Angle in Binary Document Images Using Hough Transform
Abstract:
This paper includes two novel techniques for skew estimation of binary document images. These algorithms are based on connected component analysis and Hough transform. Both these methods focus on reducing the amount of input data provided to Hough transform. In the first method, referred as word centroid approach, the centroids of selected words are used for skew detection. In the second method, referred as dilate & thin approach, the selected characters are blocked and dilated to get word blocks and later thinning is applied. The final image fed to Hough transform has the thinned coordinates of word blocks in the image. The methods have been successful in reducing the computational complexity of Hough transform based skew estimation algorithms. Promising experimental results are also provided to prove the effectiveness of the proposed methods.
10
8531
Exponential Particle Swarm Optimization Approach for Improving Data Clustering
Abstract:
In this paper we use exponential particle swarm optimization (EPSO) to cluster data. Then we compare between (EPSO) clustering algorithm which depends on exponential variation for the inertia weight and particle swarm optimization (PSO) clustering algorithm which depends on linear inertia weight. This comparison is evaluated on five data sets. The experimental results show that EPSO clustering algorithm increases the possibility to find the optimal positions as it decrease the number of failure. Also show that (EPSO) clustering algorithm has a smaller quantization error than (PSO) clustering algorithm, i.e. (EPSO) clustering algorithm more accurate than (PSO) clustering algorithm.
11
7417
Low Energy Method for Data Delivery in Ubiquitous Network
Abstract:
Recent advances in wireless sensor networks have led to many routing methods designed for energy-efficiency in wireless sensor networks. Despite that many routing methods have been proposed in USN, a single routing method cannot be energy-efficient if the environment of the ubiquitous sensor network varies. We present the controlling network access to various hosts and the services they offer, rather than on securing them one by one with a network security model. When ubiquitous sensor networks are deployed in hostile environments, an adversary may compromise some sensor nodes and use them to inject false sensing reports. False reports can lead to not only false alarms but also the depletion of limited energy resource in battery powered networks. The interleaved hop-by-hop authentication scheme detects such false reports through interleaved authentication. This paper presents a LMDD (Low energy method for data delivery) algorithm that provides energy-efficiency by dynamically changing protocols installed at the sensor nodes. The algorithm changes protocols based on the output of the fuzzy logic which is the fitness level of the protocols for the environment.
12
8708
Simulation using the Recursive Method in USN
Abstract:
Sensor networks are often deployed in unattended environments, thus leaving these networks vulnerable to false data injection attacks in which an adversary injects forged reports into the network through compromised nodes, with the goal of deceiving the base station or depleting the resources of forwarding nodes. Several research solutions have been recently proposed to detect and drop such forged reports during the forwarding process. Each design can provide the equivalent resilience in terms of node compromising. However, their energy consumption characteristics differ from each other. Thus, employing only a single filtering scheme for a network is not a recommendable strategy in terms of energy saving. It's very important the threshold determination for message authentication to identify. We propose the recursive contract net protocols which less energy level of terminal node in wireless sensor network.
13
12432
A Trust Model using Fuzzy Logic in Wireless Sensor Network
Abstract:
Adapting various sensor devices to communicate within sensor networks empowers us by providing range of possibilities. The sensors in sensor networks need to know their measurable belief of trust for efficient and safe communication. In this paper, we suggested a trust model using fuzzy logic in sensor network. Trust is an aggregation of consensus given a set of past interaction among sensors. We applied our suggested model to sensor networks in order to show how trust mechanisms are involved in communicating algorithm to choose the proper path from source to destination.
14
10564
Electric Field and Potential Distributions along Surface of Silicone Rubber Polymer Insulators Using Finite Element Method
Abstract:
This paper presents the simulation the results of electric field and potential distributions along surface of silicone rubber polymer insulators. Near the same leakage distance subjected to 15 kV in 50 cycle salt fog ageing test, alternate sheds silicone rubber polymer insulator showed better contamination performance than straight sheds silicone rubber polymer insulator. Severe surface ageing was observed on the straight sheds insulator. The objective of this work is to elucidate that electric field distribution along straight sheds insulator higher than alternate shed insulator in salt fog ageing test. Finite element method (FEM) is adopted for this work. The simulation results confirmed the experimental data, as well.
15
3915
Study of Tower Grounding Resistance Effected Back Flashover to 500 kV Transmission Line in Thailand by using ATP/EMTP
Abstract:
This study describes analysis of tower grounding resistance effected the back flashover voltage across insulator string in a transmission system. This paper studies the 500 kV transmission lines from Mae Moh, Lampang to Nong Chok, Bangkok, Thailand, which is double circuit in the same steel tower with two overhead ground wires. The factor of this study includes magnitude of lightning stroke, and front time of lightning stroke. Steel tower uses multistory tower model. The assumption of studies based on the return stroke current ranged 1-200 kA, front time of lightning stroke between 1 μs to 3 μs. The simulations study the effect of varying tower grounding resistance that affect the lightning current. Simulation results are analyzed lightning over voltage that causes back flashover at insulator strings. This study helps to know causes of problems of back flashover the transmission line system, and also be as a guideline solving the problem for 500 kV transmission line systems, as well.
16
14143
Measurement of Small PD-S in Compressed SF6(10%) - N2(90%) Gas Mixture
Abstract:
Partial Discharge measurement is a very important means of assessing the integrity of insulation systems in a High Voltage apparatus. In compressed gas insulation systems, floating particles can initiate partial discharge activities which adversely affect the working of insulation. Partial Discharges below the inception voltage also plays a crucial in damaging the integrity of insulation over a period of time. This paper discusses the effect of loose and fixed Copper and Nichrome wire particles on the PD characteristics in SF6-N2 (10:90) gas mixtures at a pressure of 0.4MPa. The Partial Discharge statistical parameters and their correlation to the observed results are discussed.
17
9495
Direct Sequence Spread Spectrum Technique with Residue Number System
Abstract:
In this paper, a residue number arithmetic is used in direct sequence spread spectrum system, this system is evaluated and the bit error probability of this system is compared to that of non residue number system. The effect of channel bandwidth, PN sequences, multipath effect and modulation scheme are studied. A Matlab program is developed to measure the signal-to-noise ratio (SNR), and the bit error probability for the various schemes.
18
7427
A Hybrid Method for Eyes Detection in Facial Images
Abstract:
This paper proposes a hybrid method for eyes localization in facial images. The novelty is in combining techniques that utilise colour, edge and illumination cues to improve accuracy. The method is based on the observation that eye regions have dark colour, high density of edges and low illumination as compared to other parts of face. The first step in the method is to extract connected regions from facial images using colour, edge density and illumination cues separately. Some of the regions are then removed by applying rules that are based on the general geometry and shape of eyes. The remaining connected regions obtained through these three cues are then combined in a systematic way to enhance the identification of the candidate regions for the eyes. The geometry and shape based rules are then applied again to further remove the false eye regions. The proposed method was tested using images from the PICS facial images database. The proposed method has 93.7% and 87% accuracies for initial blobs extraction and final eye detection respectively.
19
3831
On-line Identification of Continuous-time Hammerstein Systems via RBF Networks and Immune Algorithm
Abstract:
This paper deals with an on-line identification method of continuous-time Hammerstein systems by using the radial basis function (RBF) networks and immune algorithm (IA). An unknown nonlinear static part to be estimated is approximately represented by the RBF network. The IA is efficiently combined with the recursive least-squares (RLS) method. The objective function for the identification is regarded as the antigen. The candidates of the RBF parameters such as the centers and widths are coded into binary bit strings as the antibodies and searched by the IA. On the other hand, the candidates of both the weighting parameters of the RBF network and the system parameters of the linear dynamic part are updated by the RLS method. Simulation results are shown to illustrate the proposed method.
20
9218
A Four Architectures to Locate Mobile Users using Statistical Mapping of WLANs in Indoorand Outdoor Environments-Loids
Abstract:
These days wireless local area networks has become very popular, when the initial IEEE802.11 is the standard for providing wireless connectivity to automatic machinery, equipment and stations that require rapid deployment, which may be portable, handheld or which may be mounted on moving vehicles within a local area. IEEE802.11 Wireless local area network is a sharedmedium communication network that transmits information over wireless links for all IEEE802.11 stations in its transmission range to receive. When a user is moving from one location to another, how the other user knows about the required station inside WLAN. For that we designed and implemented a system to locate a mobile user inside the wireless local area network based on RSSI with the help of four specially designed architectures. These architectures are based on statistical or we can say manual configuration of mapping and radio map of indoor and outdoor location with the help of available Sniffer based and cluster based techniques. We found a better location of a mobile user in WLAN. We tested this work in indoor and outdoor environments with different locations with the help of Pamvotis, a simulator for WLAN.
Keywords:
21
14031
Real E-Government, Real Convenience
Abstract:
In this paper we have suggested a new system for egovernment. In this method a government can design a precise and perfect system to control people and organizations by using five major documents. These documents contain the important information of each member of a society and help all organizations to do their informatics tasks through them. This information would be available by only a national code and a secure program would support it. The suggested system can give a good awareness to the society and help it be managed correctly.
22
6436
Real-time Laser Monitoring based on Pipe Detective Operation
Abstract:
The pipe inspection operation is the difficult detective performance. Almost applications are mainly relies on a manual recognition of defective areas that have carried out detection by an engineer. Therefore, an automation process task becomes a necessary in order to avoid the cost incurred in such a manual process. An automated monitoring method to obtain a complete picture of the sewer condition is proposed in this work. The focus of the research is the automated identification and classification of discontinuities in the internal surface of the pipe. The methodology consists of several processing stages including image segmentation into the potential defect regions and geometrical characteristic features. Automatic recognition and classification of pipe defects are carried out by means of using an artificial neural network technique (ANN) based on Radial Basic Function (RBF). Experiments in a realistic environment have been conducted and results are presented.
23
10075
Information Retrieval in Domain Specific Search Engine with Machine Learning Approaches
Authors:
Abstract:
As the web continues to grow exponentially, the idea of crawling the entire web on a regular basis becomes less and less feasible, so the need to include information on specific domain, domain-specific search engines was proposed. As more information becomes available on the World Wide Web, it becomes more difficult to provide effective search tools for information access. Today, people access web information through two main kinds of search interfaces: Browsers (clicking and following hyperlinks) and Query Engines (queries in the form of a set of keywords showing the topic of interest) [2]. Better support is needed for expressing one's information need and returning high quality search results by web search tools. There appears to be a need for systems that do reasoning under uncertainty and are flexible enough to recover from the contradictions, inconsistencies, and irregularities that such reasoning involves. In a multi-view problem, the features of the domain can be partitioned into disjoint subsets (views) that are sufficient to learn the target concept. Semi-supervised, multi-view algorithms, which reduce the amount of labeled data required for learning, rely on the assumptions that the views are compatible and uncorrelated. This paper describes the use of semi-structured machine learning approach with Active learning for the “Domain Specific Search Engines". A domain-specific search engine is “An information access system that allows access to all the information on the web that is relevant to a particular domain. The proposed work shows that with the help of this approach relevant data can be extracted with the minimum queries fired by the user. It requires small number of labeled data and pool of unlabelled data on which the learning algorithm is applied to extract the required data.
24
15361
E-government Adoption in Romania
Abstract:
The Romanian government has been making significant attempts to make its services and information available on the Internet. According to the UN e-government survey conducted in 2008, Romania comes under mid range countries by utilization of egovernment (percent of utilization 41%). Romania-s national portal www.e-guvernare.ro aims at progressively making all services and information accessible through the portal. However, the success of these efforts depends, to a great extent, on how well the targeted users for such services, citizens in general, make use of them. For this reason, the purpose of the presented study was to identify what factors could affect the citizens' adoption of e-government services. The study is an extension of the Technology Acceptance Model. The proposed model was validated using data collected from 481 citizens. The results provided substantial support for all proposed hypotheses and showed the significance of the extended constructs.
25
10441
Optimized Delay Constrained QoS Routing
Abstract:
QoS Routing aims to find paths between senders and receivers satisfying the QoS requirements of the application which efficiently using the network resources and underlying routing algorithm to be able to find low-cost paths that satisfy given QoS constraints. The problem of finding least-cost routing is known to be NP-hard or complete and some algorithms have been proposed to find a near optimal solution. But these heuristics or algorithms either impose relationships among the link metrics to reduce the complexity of the problem which may limit the general applicability of the heuristic, or are too costly in terms of execution time to be applicable to large networks. In this paper, we concentrate an algorithm that finds a near-optimal solution fast and we named this algorithm as optimized Delay Constrained Routing (ODCR), which uses an adaptive path weight function together with an additional constraint imposed on the path cost, to restrict search space and hence ODCR finds near optimal solution in much quicker time.
26
6975
Modeling Concave Globoidal Cam with Swinging Roller Follower : A Case Study
Abstract:
This paper describes a computer-aided design for design of the concave globoidal cam with cylindrical rollers and swinging follower. Four models with different modeling methods are made from the same input data. The input data are angular input and output displacements of the cam and the follower and some other geometrical parameters of the globoidal cam mechanism. The best cam model is the cam which has no interference with the rollers when their motions are simulated in assembly conditions. The angular output displacement of the follower for the best cam is also compared with that of in the input data to check errors. In this study, Pro/ENGINEER® Wildfire 2.0 is used for modeling the cam, simulating motions and checking interference and errors of the system.
27
14991
A Strategy to Optimize the SPC Scheme for Mass Production of HDD Arm with ClusteringTechnique and Three-Way Control Chart
Abstract:
Consider a mass production of HDD arms where hundreds of CNC machines are used to manufacturer the HDD arms. According to an overwhelming number of machines and models of arm, construction of separate control chart for monitoring each HDD arm model by each machine is not feasible. This research proposed a strategy to optimize the SPC management on shop floor. The procedure started from identifying the clusters of the machine with similar manufacturing performance using clustering technique. The three way control chart ( I - MR - R ) is then applied to each clustered group of machine. This proposed research has advantageous to the manufacturer in terms of not only better performance of the SPC but also the quality management paradigm.
28
10711
Optimal Model Order Selection for Transient Error Autoregressive Moving Average (TERA) MRI Reconstruction Method
Abstract:
An alternative approach to the use of Discrete Fourier Transform (DFT) for Magnetic Resonance Imaging (MRI) reconstruction is the use of parametric modeling technique. This method is suitable for problems in which the image can be modeled by explicit known source functions with a few adjustable parameters. Despite the success reported in the use of modeling technique as an alternative MRI reconstruction technique, two important problems constitutes challenges to the applicability of this method, these are estimation of Model order and model coefficient determination. In this paper, five of the suggested method of evaluating the model order have been evaluated, these are: The Final Prediction Error (FPE), Akaike Information Criterion (AIC), Residual Variance (RV), Minimum Description Length (MDL) and Hannan and Quinn (HNQ) criterion. These criteria were evaluated on MRI data sets based on the method of Transient Error Reconstruction Algorithm (TERA). The result for each criterion is compared to result obtained by the use of a fixed order technique and three measures of similarity were evaluated. Result obtained shows that the use of MDL gives the highest measure of similarity to that use by a fixed order technique.
29
3015
Increasing The Speed of Convergence of an Artificial Neural Network based ARMA Coefficients Determination Technique
Abstract:
In this paper, novel techniques in increasing the accuracy and speed of convergence of a Feed forward Back propagation Artificial Neural Network (FFBPNN) with polynomial activation function reported in literature is presented. These technique was subsequently used to determine the coefficients of Autoregressive Moving Average (ARMA) and Autoregressive (AR) system. The results obtained by introducing sequential and batch method of weight initialization, batch method of weight and coefficient update, adaptive momentum and learning rate technique gives more accurate result and significant reduction in convergence time when compared t the traditional method of back propagation algorithm, thereby making FFBPNN an appropriate technique for online ARMA coefficient determination.
30
1467
Comparing Autoregressive Moving Average(ARMA) coefficients determination using Artificial Neural Networks with other techniques
Abstract:
Autoregressive Moving average (ARMA) is a parametric based method of signal representation. It is suitable for problems in which the signal can be modeled by explicit known source functions with a few adjustable parameters. Various methods have been suggested for the coefficients determination among which are Prony, Pade, Autocorrelation, Covariance and most recently, the use of Artificial Neural Network technique. In this paper, the method of using Artificial Neural network (ANN) technique is compared with some known and widely acceptable techniques. The comparisons is entirely based on the value of the coefficients obtained. Result obtained shows that the use of ANN also gives accurate in computing the coefficients of an ARMA system.
31
13757
MRI Reconstruction Using Discrete Fourier Transform: A tutorial
Abstract:

The use of Inverse Discrete Fourier Transform (IDFT) implemented in the form of Inverse Fourier Transform (IFFT) is one of the standard method of reconstructing Magnetic Resonance Imaging (MRI) from uniformly sampled K-space data. In this tutorial, three of the major problems associated with the use of IFFT in MRI reconstruction are highlighted. The tutorial also gives brief introduction to MRI physics; MRI system from instrumentation point of view; K-space signal and the process of IDFT and IFFT for One and two dimensional (1D and 2D) data.

32
1013
A Novel EMG Feedback Control Method in Functional Electrical Stimulation Cycling System for Stroke Patients
Abstract:
With getting older in the whole population, the prevalence of stroke and its residual disability is getting higher and higher recently in Taiwan. The functional electrical stimulation cycling system (FESCS) is useful for hemiplegic patients. Because that the muscle of stroke patients is under hybrid activation. The raw electromyography (EMG) represents the residual muscle force of stroke subject whereas the peak-to-peak of stimulus EMG indicates the force enhancement benefiting from ES. It seems that EMG signals could be used for a parameter of feedback control mechanism. So, we design the feedback control protocol of FESCS, it includes physiological signal recorder, FPGA biomedical module, DAC and electrical stimulation circuit. Using the intensity of real-time EMG signal obtained from patients, as a feedback control method for the output voltage of FES-cycling system.
33
524
Effect of Boric Acid on a-Hydroxy Acids Compounds in Thin Layer Chromatography
Abstract:
In this investigation Salicylic acid, Sulfosalicylic acid and Acetyl salicylic acid were chosen as a sample for thin layer chromatography (TLC) on silica gel plates. Bicarbonate buffer at different pH containing different amounts of boric acid was applied as mobile phase. Specific interaction of these substances with boric acid has effect on Rf in thin layer chromatography. Regular and similar trend was observed in variations of Rf for mentioned compounds in TLC by altering of percentages of boric acid in mobile phase in pH range of 8-10. Also effect of organic solvent, mixture of water/ organic solvent and organic solvent containing boric acid as mobile phase was studied.
34
6116
Separation of Vitamin B2 and B12 byImpregnate HPTLC Plates with Boric Acid
Abstract:
A high performance thin layer chromatography system (HPTLC) for the separation of vitamin B2 and B12 has been developed. The separation was successfully using a solvent system of methanol, water, ammonia 7.3.1 (V/V) as mobile phase on HPTLC plates impregnated with boric acid. The effect of other mobile phases on the separation of vitamins was also examined. The method is based on different behavior of investigated compounds in impregnated TLC plates with different amount of boric acid. The Rf values of vitamin B2 and B12 are considered on non impregnated and impregnated silica gel HPTLC plate with boric acid. The effect of boric acid in the mobile phase and on HPTLC plates on the RF values of the vitamins has also been studied.
35
14341
P-ACO Approach to Assignment Problem in FMSs
Abstract:

One of the most important problems in production planning of flexible manufacturing system (FMS) is machine tool selection and operation allocation problem that directly influences the production costs and times .In this paper minimizing machining cost, set-up cost and material handling cost as a multi-objective problem in flexible manufacturing systems environment are considered. We present a 0-1 integer linear programming model for the multiobjective machine tool selection and operation allocation problem and due to the large scale nature of the problem, solving the problem to obtain optimal solution in a reasonable time is infeasible, Paretoant colony optimization (P-ACO) approach for solving the multiobjective problem in reasonable time is developed. Experimental results indicate effectiveness of the proposed algorithm for solving the problem.

36
2412
Application of Data Mining Tools to Predicate Completion Time of a Project
Abstract:
Estimation time and cost of work completion in a project and follow up them during execution are contributors to success or fail of a project, and is very important for project management team. Delivering on time and within budgeted cost needs to well managing and controlling the projects. To dealing with complex task of controlling and modifying the baseline project schedule during execution, earned value management systems have been set up and widely used to measure and communicate the real physical progress of a project. But it often fails to predict the total duration of the project. In this paper data mining techniques is used predicting the total project duration in term of Time Estimate At Completion-EAC (t). For this purpose, we have used a project with 90 activities, it has updated day by day. Then, it is used regular indexes in literature and applied Earned Duration Method to calculate time estimate at completion and set these as input data for prediction and specifying the major parameters among them using Clem software. By using data mining, the effective parameters on EAC and the relationship between them could be extracted and it is very useful to manage a project with minimum delay risks. As we state, this could be a simple, safe and applicable method in prediction the completion time of a project during execution.
37
13246
Application of Artificial Neural Network to Forecast Actual Cost of a Project to Improve Earned Value Management System
Abstract:
This paper presents an application of Artificial Neural Network (ANN) to forecast actual cost of a project based on the earned value management system (EVMS). For this purpose, some projects randomly selected based on the standard data set , and it is produced necessary progress data such as actual cost ,actual percent complete , baseline cost and percent complete for five periods of project. Then an ANN with five inputs and five outputs and one hidden layer is trained to produce forecasted actual costs. The comparison between real and forecasted data show better performance based on the Mean Absolute Percentage Error (MAPE) criterion. This approach could be applicable to better forecasting the project cost and result in decreasing the risk of project cost overrun, and therefore it is beneficial for planning preventive actions.
38
15752
Pushing the Limits of Address Based Authentication: How to Avoid MAC Address Spoofing in Wireless LANs
Abstract:
It is well-known that in wireless local area networks, authenticating nodes by their MAC addresses is not secure since it is very easy for an attacker to learn one of the authorized addresses and change his MAC address accordingly. In this paper, in order to prevent MAC address spoofing attacks, we propose to use dynamically changing MAC addresses and make each address usable for only one session. The scheme we propose does not require any change in 802.11 protocols and incurs only a small performance overhead. One of the nice features of our new scheme is that no third party can link different communication sessions of the same user by monitoring MAC addresses therefore our scheme is preferable also with respect to user privacy.
39
1072
A Case Study to Assess the Validity of Function Points
Abstract:
Many metrics were proposed to evaluate the characteristics of the analysis and design model of a given product which in turn help to assess the quality of the product. Function point metric is a measure of the 'functionality' delivery by the software. This paper presents an analysis of a set of programs of a project developed in Cµ through Function Points metric. Function points are measured for a Data Flow Diagram (DFD) of the case developed at initial stage. Lines of Codes (LOCs) and possible errors are calculated with the help of measured Function Points (FPs). The calculations are performed using suitable established functions. Calculated LOCs and errors are compared with actual LOCs and errors found at the time of analysis & design review, implementation and testing. It has been observed that actual found errors are more than calculated errors. On the basis of analysis and observations, authors conclude that function point provides useful insight and helps to analyze the drawbacks in the development process.
40
8525
A New Type of Integration Error and its Influence on Integration Testing Techniques
Abstract:
Testing is an activity that is required both in the development and maintenance of the software development life cycle in which Integration Testing is an important activity. Integration testing is based on the specification and functionality of the software and thus could be called black-box testing technique. The purpose of integration testing is testing integration between software components. In function or system testing, the concern is with overall behavior and whether the software meets its functional specifications or performance characteristics or how well the software and hardware work together. This explains the importance and necessity of IT for which the emphasis is on interactions between modules and their interfaces. Software errors should be discovered early during IT to reduce the costs of correction. This paper introduces a new type of integration error, presenting an overview of Integration Testing techniques with comparison of each technique and also identifying which technique detects what type of error.
41
9892
A Classification Scheme for Game Input and Output
Abstract:
Computer game industry has experienced exponential growth in recent years. A game is a recreational activity involving one or more players. Game input is information such as data, commands, etc., which is passed to the game system at run time from an external source. Conversely, game outputs are information which are generated by the game system and passed to an external target, but which is not used internally by the game. This paper identifies a new classification scheme for game input and output, which is based on player-s input and output. Using this, relationship table for game input classifier and output classifier is developed.
42
9558
ReSeT : Reverse Engineering System Requirements Tool
Abstract:
Reverse Engineering is a very important process in Software Engineering. It can be performed backwards from system development life cycle (SDLC) in order to get back the source data or representations of a system through analysis of its structure, function and operation. We use reverse engineering to introduce an automatic tool to generate system requirements from its program source codes. The tool is able to accept the Cµ programming source codes, scan the source codes line by line and parse the codes to parser. Then, the engine of the tool will be able to generate system requirements for that specific program to facilitate reuse and enhancement of the program. The purpose of producing the tool is to help recovering the system requirements of any system when the system requirements document (SRD) does not exist due to undocumented support of the system.
43
14252
Formal Modeling and Verification of Software Models
Abstract:
Graph transformation has recently become more and more popular as a general visual modeling language to formally state the dynamic semantics of the designed models. Especially, it is a very natural formalism for languages which basically are graph (e.g. UML). Using this technique, we present a highly understandable yet precise approach to formally model and analyze the behavioral semantics of UML 2.0 Activity diagrams. In our proposal, AGG is used to design Activities, then using our previous approach to model checking graph transformation systems, designers can verify and analyze designed Activity diagrams by checking the interesting properties as combination of graph rules and LTL (Linear Temporal Logic) formulas on the Activities.
44
4179
A Middleware Transparent Framework for Applying MDA to SOA
Abstract:
Although Model Driven Architecture has taken successful steps toward model-based software development, this approach still faces complex situations and ambiguous questions while applying to real world software systems. One of these questions - which has taken the most interest and focus - is how model transforms between different abstraction levels, MDA proposes. In this paper, we propose an approach based on Story Driven Modeling and Aspect Oriented Programming to ease these transformations. Service Oriented Architecture is taken as the target model to test the proposed mechanism in a functional system. Service Oriented Architecture and Model Driven Architecture [1] are both considered as the frontiers of their own domain in the software world. Following components - which was the greatest step after object oriented - SOA is introduced, focusing on more integrated and automated software solutions. On the other hand - and from the designers' point of view - MDA is just initiating another evolution. MDA is considered as the next big step after UML in designing domain.
45
15871
Effective Defect Prevention Approach in Software Process for Achieving Better Quality Levels
Abstract:
Defect prevention is the most vital but habitually neglected facet of software quality assurance in any project. If functional at all stages of software development, it can condense the time, overheads and wherewithal entailed to engineer a high quality product. The key challenge of an IT industry is to engineer a software product with minimum post deployment defects. This effort is an analysis based on data obtained for five selected projects from leading software companies of varying software production competence. The main aim of this paper is to provide information on various methods and practices supporting defect detection and prevention leading to thriving software generation. The defect prevention technique unearths 99% of defects. Inspection is found to be an essential technique in generating ideal software generation in factories through enhanced methodologies of abetted and unaided inspection schedules. On an average 13 % to 15% of inspection and 25% - 30% of testing out of whole project effort time is required for 99% - 99.75% of defect elimination. A comparison of the end results for the five selected projects between the companies is also brought about throwing light on the possibility of a particular company to position itself with an appropriate complementary ratio of inspection testing.
46
10208
UML Modeling for Instruction Pipeline Design
Abstract:
Unified Modeling language (UML) is one of the important modeling languages used for the visual representation of the research problem. In the present paper, UML model is designed for the Instruction pipeline which is used for the evaluation of the instructions of software programs. The class and sequence diagrams are designed & performance is evaluated for instructions of a sample program through a case study.
47
3978
Delay Analysis of Sampled-Data Systems in Hard RTOS
Abstract:
In this paper, we have presented the effect of varying time-delays on performance and stability in the single-channel multirate sampled-data system in hard real-time (RT-Linux) environment. The sampling task require response time that might exceed the capacity of RT-Linux. So a straight implementation with RT-Linux is not feasible, because of the latency of the systems and hence, sampling period should be less to handle this task. The best sampling rate is chosen for the sampled-data system, which is the slowest rate meets all performance requirements. RT-Linux is consistent with its specifications and the resolution of the real-time is considered 0.01 seconds to achieve an efficient result. The test results of our laboratory experiment shows that the multi-rate control technique in hard real-time operating system (RTOS) can improve the stability problem caused by the random access delays and asynchronization.
48
15151
Improved C-Fuzzy Decision Tree for Intrusion Detection
Abstract:
As the number of networked computers grows, intrusion detection is an essential component in keeping networks secure. Various approaches for intrusion detection are currently being in use with each one has its own merits and demerits. This paper presents our work to test and improve the performance of a new class of decision tree c-fuzzy decision tree to detect intrusion. The work also includes identifying best candidate feature sub set to build the efficient c-fuzzy decision tree based Intrusion Detection System (IDS). We investigated the usefulness of c-fuzzy decision tree for developing IDS with a data partition based on horizontal fragmentation. Empirical results indicate the usefulness of our approach in developing the efficient IDS.
49
1849
Multilevel Classifiers in Recognition of Handwritten Kannada Numerals
Abstract:
The recognition of handwritten numeral is an important area of research for its applications in post office, banks and other organizations. This paper presents automatic recognition of handwritten Kannada numerals based on structural features. Five different types of features, namely, profile based 10-segment string, water reservoir; vertical and horizontal strokes, end points and average boundary length from the minimal bounding box are used in the recognition of numeral. The effect of each feature and their combination in the numeral classification is analyzed using nearest neighbor classifiers. It is common to combine multiple categories of features into a single feature vector for the classification. Instead, separate classifiers can be used to classify based on each visual feature individually and the final classification can be obtained based on the combination of separate base classification results. One popular approach is to combine the classifier results into a feature vector and leaving the decision to next level classifier. This method is extended to extract a better information, possibility distribution, from the base classifiers in resolving the conflicts among the classification results. Here, we use fuzzy k Nearest Neighbor (fuzzy k-NN) as base classifier for individual feature sets, the results of which together forms the feature vector for the final k Nearest Neighbor (k-NN) classifier. Testing is done, using different features, individually and in combination, on a database containing 1600 samples of different numerals and the results are compared with the results of different existing methods.
50
10929
A Middleware System between WEB and Database Servers
Abstract:
This paper aims at improving web server performance by establishing a middleware layer between web and database servers, which minimizes the overload on the database server. A middleware system has been developed as a service mainly to improve the performance. This system manages connection accesses in a way that would result in reducing the overload on the database server. In addition to the connection management, this system acts as an object-oriented model for best utilization of operating system resources. A web developer can use this Service Broker to improve web server performance.
51
12948
Newton-Raphson State Estimation Solution Employing Systematically Constructed Jacobian Matrix
Abstract:
Newton-Raphson State Estimation method using bus admittance matrix remains as an efficient and most popular method to estimate the state variables. Elements of Jacobian matrix are computed from standard expressions which lack physical significance. In this paper, elements of the state estimation Jacobian matrix are obtained considering the power flow measurements in the network elements. These elements are processed one-by-one and the Jacobian matrix H is updated suitably in a simple manner. The constructed Jacobian matrix H is integrated with Weight Least Square method to estimate the state variables. The suggested procedure is successfully tested on IEEE standard systems.
52
10905
Fiber Optic Sensors
Abstract:
Fiber optic sensor technology offers the possibility of sensing different parameters like strain, temperature, pressure in harsh environment and remote locations. these kinds of sensors modulates some features of the light wave in an optical fiber such an intensity and phase or use optical fiber as a medium for transmitting the measurement information. The advantages of fiber optic sensors in contrast to conventional electrical ones make them popular in different applications and now a day they consider as a key component in improving industrial processes, quality control systems, medical diagnostics, and preventing and controlling general process abnormalities. This paper is an introduction to fiber optic sensor technology and some of the applications that make this branch of optic technology, which is still in its early infancy, an interesting field.
53
15060
Techniques for Peak to Average Power Ratio Reduction
Abstract:
This paper introduces a techniques for peak to average power ratio (PAPR) reduction of orthogonal Frequency Division Multiplexing (OFDM) and concentrated on the coding technique which give high throughput and high performance in wireless communication then showing that pseudo orthogonal carrier interferometry (po-ci ) spreading codes are selected to introduce the following benefits to OFDM: up to 2N parallel data streams can be coded onto N carriers, with little degradation in performance.
54
11084
Parallel and Distributed Mining of Association Rule on Knowledge Grid
Abstract:
In Virtual organization, Knowledge Discovery (KD) service contains distributed data resources and computing grid nodes. Computational grid is integrated with data grid to form Knowledge Grid, which implements Apriori algorithm for mining association rule on grid network. This paper describes development of parallel and distributed version of Apriori algorithm on Globus Toolkit using Message Passing Interface extended with Grid Services (MPICHG2). The creation of Knowledge Grid on top of data and computational grid is to support decision making in real time applications. In this paper, the case study describes design and implementation of local and global mining of frequent item sets. The experiments were conducted on different configurations of grid network and computation time was recorded for each operation. We analyzed our result with various grid configurations and it shows speedup of computation time is almost superlinear.
55
3599
An Intelligent System for Phish Detection, using Dynamic Analysis and Template Matching
Abstract:
Phishing, or stealing of sensitive information on the web, has dealt a major blow to Internet Security in recent times. Most of the existing anti-phishing solutions fail to handle the fuzziness involved in phish detection, thus leading to a large number of false positives. This fuzziness is attributed to the use of highly flexible and at the same time, highly ambiguous HTML language. We introduce a new perspective against phishing, that tries to systematically prove, whether a given page is phished or not, using the corresponding original page as the basis of the comparison. It analyzes the layout of the pages under consideration to determine the percentage distortion between them, indicative of any form of malicious alteration. The system design represents an intelligent system, employing dynamic assessment which accurately identifies brand new phishing attacks and will prove effective in reducing the number of false positives. This framework could potentially be used as a knowledge base, in educating the internet users against phishing.
56
15549
Walking Hexapod Robot in Disaster Recovery: Developing Algorithm for Terrain Negotiation and Navigation
Abstract:
In modern day disaster recovery mission has become one of the top priorities in any natural disaster management regime. Smart autonomous robots may play a significant role in such missions, including search for life under earth quake hit rubbles, Tsunami hit islands, de-mining in war affected areas and many other such situations. In this paper current state of many walking robots are compared and advantages of hexapod systems against wheeled robots are described. In our research we have selected a hexapod spider robot; we are developing focusing mainly on efficient navigation method in different terrain using apposite gait of locomotion, which will make it faster and at the same time energy efficient to navigate and negotiate difficult terrain. This paper describes the method of terrain negotiation navigation in a hazardous field.
57
3593
Averaging Mechanisms to Decision Making for Handover in GSM
Abstract:
In cellular networks, limited availability of resources has to be tapped to its fullest potential. In view of this aspect, a sophisticated averaging and voting technique has been discussed in this paper, wherein the radio resources available are utilized to the fullest value by taking into consideration, several network and radio parameters which decide on when the handover has to be made and thereby reducing the load on Base station .The increase in the load on the Base station might be due to several unnecessary handover taking place which can be eliminated by making judicious use of the radio and network parameters.
58
1111
Exploiting Query Feedback for Efficient Query Routing in Unstructured Peer-to-peer Networks
Abstract:
Unstructured peer-to-peer networks are popular due to its robustness and scalability. Query schemes that are being used in unstructured peer-to-peer such as the flooding and interest-based shortcuts suffer various problems such as using large communication overhead long delay response. The use of routing indices has been a popular approach for peer-to-peer query routing. It helps the query routing processes to learn the routing based on the feedbacks collected. In an unstructured network where there is no global information available, efficient and low cost routing approach is needed for routing efficiency. In this paper, we propose a novel mechanism for query-feedback oriented routing indices to achieve routing efficiency in unstructured network at a minimal cost. The approach also applied information retrieval technique to make sure the content of the query is understandable and will make the routing process not just based to the query hits but also related to the query content. Experiments have shown that the proposed mechanism performs more efficient than flood-based routing.
59
15547
Single Phase to Three Phase Converter
Abstract:
A new single phase to three phase converter topology for small industries is presented in this paper: Phase converter, include this paper, is a new technology that supplies three phase power from a single phase source to power inductive, resistive and capacitive loads with distinct advantages over any existing converter technology. The converter consists of DC power supply, a MOSFET Hex-bridge, integrated gate drive IC, and a DSP to generate the switching signals. The switching signals generated are a unique version of selective harmonic elimination, which produces a consistent starting point for the switching functions, independent of the number of harmonics eliminated This converter covers the basis of induction motors and different types of other motors. They are ideal for farms, workshops, garages and large building etc.
60
6421
Implementation of PIC based Digital Frequency Counter
Authors:
Abstract:
The main process of this research is to display the frequency ranges of input frequency. Any desired input frequency from 10Hz to 30 MHz can be counted and displayed using Peripheral Interfacing Controller (PIC) 16f84A and seven digits of Seven Segment Light emitting diodes (LED) display. The input frequency is counted by PIC16F84A and the output from this PIC pins are decoded by analog multiplexer, 4051 Integrated Circuit (IC). Seven digits are displayed by passing seven NPN Bipolar Junction transistors (BJT), BC547.The main desired output is the high resolution display in MHz range of frequency. Studying the PIC Microcontroller, seven segments LED display and the decoders are included in this research. PIC Assembler Software Techniques are also implemented with this research. In this research, the complete design of the advanced frequency Counter is provided. By the help of components, such as, transistors, diodes, the hardware and software technology are combined and developed in this project.
61
1178
Work Coil Design used in Induction Hardening Machine
Abstract:
The induction hardening machines are utilized in the industries which produce machine parts and tools needed to achieve high wear resistance. If they are constructed in local, the industries can utilize them commonly and easily. As the machines are designed and constructed in accordance with the desired products, the quality of products is higher and the products can be used efficiently. In the study of Design and Construction of Induction Hardening Machine, the design of work coil is presented. A small model induction hardening machine is designed for the output power 5 kW and operation frequency 35 kHz. As the work coil is the heart of the machine, a good coil design reduces power requirement and causes good efficiency. The design of work coil that causes the most magnetic flux density in the work piece, the least power consumption and develops desired heat during limited time is studied. It has been attempted to design the helical multi-turn type of work coil for any size of cylindrical shape of work piece with uniform surface. The design study is covered the changing of work piece size, the changing of work coil turns and the changing the applied frequencies.
62
2840
Practical Approach to Rudder Control System for UAV using Low Cost MEMS Sensors
Abstract:
Applying Micro Electromechanical Systems (MEMS) inertial sensors for the Guidance, Navigation and Control (GNC) of an autonomous Unmanned Aerial Vehicle (UAV) are an extremely challenging area. This paper presents a practical approach of applying a control system to control one of the control surfaces of UAV using MEMS inertial sensors, microcontroller and servo motor. In the paper, the control surface (rudder) is controlled in two modes; manual mode using a joystick and automotive mode using an accelerometer. The required yaw position of UAV is controlled manually and its stability is maintained by means of control system including an accelerometer. The whole control algorithm was implemented within a microcontroller. The future goals of this research are to incorporate more sensors to increase the level of autonomy for UAV operation.
63
9364
Development and Implementation of Microcontroller-based Digital Clock
Authors:
Abstract:
Electronic clocks have predominately replaced the mechanical clocks. They are much reliable, accurate, maintenance free and portable. In general, there are two kinds of electronic clocks. They are analog clock and digital clock. But digital clocks are more common and independent of external source. It would be needed the controlled devices and implementation of software for microcontroller control system because the hardware devices cannot do any desired task to execute. In this paper, the microcontroller-based digital clock is constructed with PIC16F877A and its software program is written with CCS C program language. Various types of digital clocks and modules are available in the market nowadays but this clock is different at least in the accurate time. To be controlling in microcontroller is only the feature of the clock. The input frequency is taken from the 50 Hz clock frequency circuit. To show the time, seven-segment Light Emitting Diodes (LEDs) and four LEDs are used.
64
15714
Feature Subset Selection approach based on Maximizing Margin of Support Vector Classifier
Abstract:
Identification of cancer genes that might anticipate the clinical behaviors from different types of cancer disease is challenging due to the huge number of genes and small number of patients samples. The new method is being proposed based on supervised learning of classification like support vector machines (SVMs).A new solution is described by the introduction of the Maximized Margin (MM) in the subset criterion, which permits to get near the least generalization error rate. In class prediction problem, gene selection is essential to improve the accuracy and to identify genes for cancer disease. The performance of the new method was evaluated with real-world data experiment. It can give the better accuracy for classification.
65
11712
Modeling Motion Control System for Motorized Robot Arm using MATLAB
Abstract:
In this paper a motion control system of a robot arm is described. Robots arms are built their motion machine, Motors. DC motor is chosen for the robot arm and the author also presents how to choose this motor. The robot arm is with single degree of freedom and motion control system for it is selected using MATLAB Simulink software. This paper is mainly focus to apply MATLAB software to Control system design. The system is simple but it is deigned the motor to move the robot arm to proper angular position according to the input.
66
5269
Analysis of Sound Frequency Three-Phase Inverter Used in Instrumentation and Maintenance of Aircraft
Abstract:
As our nation is developing country, the industrial sector is developing throughout the country. For modern aircraft industries and laboratories, the static inverter technology is mainly used in application and testing of the flight equipments. Furthermore, they are widely used in laboratories of Aerospace Engineering Universities all over the world. By providing this equipment for the aircraft instrumentation, it can be used as laboratory equipment in Myanmar Aerospace Engineering University. This paper analyses the output stage of the three-phase inverter and use analog control to get require switching conditions. As a control circuit, UA 741 operational amplifiers are used to get all required outputs and National Instrument multi-simulation software is use to simulate required result. Careful and deep studies are made upon the theory of switching mode converter and its design.
67
139
Implementation of Neural Network Based Electricity Load Forecasting
Abstract:
This paper proposed a novel model for short term load forecast (STLF) in the electricity market. The prior electricity demand data are treated as time series. The model is composed of several neural networks whose data are processed using a wavelet technique. The model is created in the form of a simulation program written with MATLAB. The load data are treated as time series data. They are decomposed into several wavelet coefficient series using the wavelet transform technique known as Non-decimated Wavelet Transform (NWT). The reason for using this technique is the belief in the possibility of extracting hidden patterns from the time series data. The wavelet coefficient series are used to train the neural networks (NNs) and used as the inputs to the NNs for electricity load prediction. The Scale Conjugate Gradient (SCG) algorithm is used as the learning algorithm for the NNs. To get the final forecast data, the outputs from the NNs are recombined using the same wavelet technique. The model was evaluated with the electricity load data of Electronic Engineering Department in Mandalay Technological University in Myanmar. The simulation results showed that the model was capable of producing a reasonable forecasting accuracy in STLF.
68
3512
Microcontroller Based Electric Expansion Valve Controller for Air Conditioning System
Abstract:
In the air conditioning system, the electric expansion valve (EEV) is one of the most important parts of the system. It regulates how much liquid refrigerant enters the evaporator and tries to maintain a preset temperature difference between the inlet and outlet opening of the evaporator. In this paper, the author would like to implement how to control the EEV by comparing the temperature difference between the actual temperature and predetermined situation temperature to the reference setting point. Here, the author does not use the real EEV used in the aircon, but only uses the stepper motor to control the EEV. Stepper motor operates the precise refrigerant control because it does not rotate continuously but stops at the position predetermined by the control algorithm. In this paper, proportional control algorithm is applied. As the stepper motor driving system, PIC based control system is designed including the assembly software technology and dirlington control circuit is used. For the implementation of the stepper motor driving system, PIC16F877A is used and to detect the surrounding temperature LM35 temperature sensor is used. The outputs of the PIC are commands to drive the stepper motor, inputs of the dirlington control circuit. Therefore, this paper mainly focuses on how the stepper motor controls the EEV for the air conditioning system and finally shows the test and result of the outputs of the PIC16F877A.
69
2585
Development of Unmanned Aerial Vehicle Manual Control System
Abstract:
Unmanned aerial vehicles are aircrafts capable of flight without an on-board operator. Such vehicles can be controlled remotely by an operator on the ground, or autonomously via a preprogrammed flight path. UAVs are already being used by the military for recognizance and search and rescue operations. This paper describes design and implementation of manual remote control system for UAV. The testing system in our lab includes two control systems: automatic control and manual control. This paper is for manual control of vehicle to get the desired target via the joysticks. UHF wireless transmitter and receiver pairs are used for data communication link between the ground station and the receiver on the vehicle. The control system is based on microcontroller PIC16F877 that is used for low part cost, software tools available, inexpensive. The microcontroller C language is used for this control system.
70
12130
Solar Energy Potential and Applications in Myanmar
Abstract:
Energy consumption is one of the indices in determining the levels of development of a nation. Therefore, availability of energy supply to all sectors of life in any country is crucial for its development. These exists shortage of all kinds of energy, particularly electricity which is badly needed for economic development. Electricity from the sun which is quite abundant in most of the developing countries is used in rural areas to meet basic electricity needs of a rural community. Today-s electricity supply in Myanmar is generated by fuel generators and hydroelectric power plants. However, far-flung areas which are away from National Grids cannot enjoy the electricity generated by these sources. Since Myanmar is a land of plentiful sunshine, especially in central and southern regions of the country, the first form of energy- solar energy could hopefully become the final solution to its energy supply problem. The direct conversion of solar energy into electricity using photovoltaic system has been receiving intensive installation not only in developed countries but also in developing countries. It is mainly intended to present solar energy potential and application in Myanmar. It is also wanted to get the benefits of using solar energy for people in remote areas which are not yet connected to the national grids because of the high price of fossil fuel.
71
9918
Design of Hydraulic Circuit for CNC Lathe Machine Converted from Conventional Lathe Machine
Abstract:
Nowadays, products can be produced by modern technology, which uses computer software, hardware and firm ware in industries. It is needed to use CNC lathe machine to get more accurate dimensions and irregular shape. So, CNC machines are becoming more and more important in modernized industrialization. There are many conventional lathe machines in our country, Myanmar. To build a new modern developed country, it is required to convert these conventional lathe machines into semi automatic control lathe machine. Developing and changing into semi automatic control lathe machine, there are three required portions, namely, mechanical, electronics and mechatronics. From the mechanical point of view, the design of hydraulic circuit is dramatically needed. The functions of hydraulic circuits for semi automatic control lathe are analyzed in this paper. These consist of changing the tool, working the machining processes and locating the tool in turret. In this research paper, the hydraulic circuit design which can be changed four kinds of tools by using hydraulic motor is made and also constructed. The hydraulic circuit comprises vane pump, hydraulic motor, and two directional control valves for changing the tool; 4/3- way valve and 4/2-way valve. The transfer function of each component is derived and the whole system is analyzed in this thesis.
72
12981
A Simple and Cost-effective Method of Voice Encoding/Decoding System
Abstract:
The present work is devoted a simple and costeffective method of voice encoding/decoding system (Delta Modulator/Demodulator) using simulation software ORCAD 9.2. The various useful applications of op-amp as a comparator, integrator and filter are described to implement delta modulator/ demodulator in this paper at the point of theoretical approach. And also, an acceptable SNR is calculated for this system using the graph of output signal and their harmonics in the frequency domain obtained from the simulation result.
73
10675
Increasing Lifetime of Target Tracking Wireless Sensor Networks
Abstract:
A model to identify the lifetime of target tracking wireless sensor network is proposed. The model is a static clusterbased architecture and aims to provide two factors. First, it is to increase the lifetime of target tracking wireless sensor network. Secondly, it is to enable good localization result with low energy consumption for each sensor in the network. The model consists of heterogeneous sensors and each sensing member node in a cluster uses two operation modes–active mode and sleep mode. The performance results illustrate that the proposed architecture consumes less energy and increases lifetime than centralized and dynamic clustering architectures, for target tracking sensor network.
74
13504
Design Calculation and Performance Testing of Heating Coil in Induction Surface Hardening Machine
Abstract:
The induction hardening machines are utilized in the industries which modify machine parts and tools needed to achieve high ware resistance. This paper describes the model of induction heating process design of inverter circuit and the results of induction surface hardening of heating coil. In the design of heating coil, the shape and the turn numbers of the coil are very important design factors because they decide the overall operating performance of induction heater including resonant frequency, Q factor, efficiency and power factor. The performance will be tested by experiments in some cases high frequency induction hardening machine.
75
11158
Dynamic Modeling and Simulation of Threephase Small Power Induction Motor
Abstract:
This paper is proposed the dynamic simulation of small power induction motor based on Mathematical modeling. The dynamic simulation is one of the key steps in the validation of the design process of the motor drive systems and it is needed for eliminating inadvertent design mistakes and the resulting error in the prototype construction and testing. This paper demonstrates the simulation of steady-state performance of induction motor by MATLAB Program Three phase 3 hp induction motor is modeled and simulated with SIMULINK model.
76
13771
Voltage Control and Dynamic Performance of Power Transmission System Using Static Var Compensator
Abstract:
This paper will discuss and demonstrate how Static Var Compensator (SVC) has successfully been applied to control transmission systems dynamic performance for system disturbance and effectively regulate system voltage. SVC is basically a shunt connected static var generator whose output is adjusted to exchange capacitive or inductive current so as to maintain or control specific power variable; tyipically, the control variable is the SVC bus voltage. One of the major reason for installing a SVC is to improve dynamic voltage control and thus increase system loadability There are the mainly accomplishes work to construct an effective for SVC. Firstly, to design a controller for SVC devices on transmission lines, a Single Machine Infinite Bus (SMIB) system is modeled. A statedspace mathematical model is constructed which considers both electromechanical oscillations and reactive current of the SVC at the installation site. The installation site for this paper is Hlawkar generation station in Myanmar. And datas will also be taken from this station. Simulation results will be provided by using MATLAB programming. The SVC is more effectively enhance the transient stability and increase transmission capacity.
77
7117
Design of Earthing System for New Substation Project (Shwe Sar Yan) in Myanmar
Abstract:
This paper presents the design of earthing system for 230 kV substation and simulation for calculation of required parameters. In substation, earthing system is essential not only to provide the protection of people working or walking in the vicinity of earthed facilities and equipments against the danger of electric shock but also to maintain the proper function of the electrical system. By using proper conductor and electrode side, earthing system may be able to lightning effects. This paper is to provide information pertinent to safe earthing practices in AC substation design and to establish the safe limits of potential differences under normal and fault conditions. Standard equations are used in the design of earthing system to get desired parameters such as touch and step voltage criteria for safety, earth resistance, grid resistance, maximum grid current, minimum conductor size and electrode size, maximum fault current level and resistivity of soil. By selection the proper horizontal conductor size, vertical electrode size and soil resistivity, the best choice of the project for safety is performed. This paper mentions the calculation of the desired parameters which are simulated by MATLAB program. Some simulated results are evaluated. The goal of this paper is to be a safe earthing system for substations.
78
2069
Color Image Edge Detection using Pseudo-Complement and Matrix Operations
Abstract:
A color image edge detection algorithm is proposed in this paper using Pseudo-complement and matrix rotation operations. First, pseudo-complement method is applied on the image for each channel. Then, matrix operations are applied on the output image of the first stage. Dominant pixels are obtained by image differencing between the pseudo-complement image and the matrix operated image. Median filtering is carried out to smoothen the image thereby removing the isolated pixels. Finally, the dominant or core pixels occurring in at least two channels are selected. On plotting the selected edge pixels, the final edge map of the given color image is obtained. The algorithm is also tested in HSV and YCbCr color spaces. Experimental results on both synthetic and real world images show that the accuracy of the proposed method is comparable to other color edge detectors. All the proposed procedures can be applied to any image domain and runs in polynomial time.
79
9283
Delay Preserving Substructures in Wireless Networks Using Edge Difference between a Graph and its Square Graph
Abstract:
In practice, wireless networks has the property that the signal strength attenuates with respect to the distance from the base station, it could be better if the nodes at two hop away are considered for better quality of service. In this paper, we propose a procedure to identify delay preserving substructures for a given wireless ad-hoc network using a new graph operation G 2 – E (G) = G* (Edge difference of square graph of a given graph and the original graph). This operation helps to analyze some induced substructures, which preserve delay in communication among them. This operation G* on a given graph will induce a graph, in which 1- hop neighbors of any node are at 2-hop distance in the original network. In this paper, we also identify some delay preserving substructures in G*, which are (i) set of all nodes, which are mutually at 2-hop distance in G that will form a clique in G*, (ii) set of nodes which forms an odd cycle C2k+1 in G, will form an odd cycle in G* and the set of nodes which form a even cycle C2k in G that will form two disjoint companion cycles ( of same parity odd/even) of length k in G*, (iii) every path of length 2k+1 or 2k in G will induce two disjoint paths of length k in G*, and (iv) set of nodes in G*, which induces a maximal connected sub graph with radius 1 (which identifies a substructure with radius equal 2 and diameter at most 4 in G). The above delay preserving sub structures will behave as good clusters in the original network.
80
5111
Enhanced Character Based Algorithm for Small Parsimony
Abstract:
Phylogenetic tree is a graphical representation of the evolutionary relationship among three or more genes or organisms. These trees show relatedness of data sets, species or genes divergence time and nature of their common ancestors. Quality of a phylogenetic tree requires parsimony criterion. Various approaches have been proposed for constructing most parsimonious trees. This paper is concerned about calculating and optimizing the changes of state that are needed called Small Parsimony Algorithms. This paper has proposed enhanced small parsimony algorithm to give better score based on number of evolutionary changes needed to produce the observed sequence changes tree and also give the ancestor of the given input.
81
7452
A Complexity Measure for Java Bean based Software Components
Abstract:
The traditional software product and process metrics are neither suitable nor sufficient in measuring the complexity of software components, which ultimately is necessary for quality and productivity improvement within organizations adopting CBSE. Researchers have proposed a wide range of complexity metrics for software systems. However, these metrics are not sufficient for components and component-based system and are restricted to the module-oriented systems and object-oriented systems. In this proposed study it is proposed to find the complexity of the JavaBean Software Components as a reflection of its quality and the component can be adopted accordingly to make it more reusable. The proposed metric involves only the design issues of the component and does not consider the packaging and the deployment complexity. In this way, the software components could be kept in certain limit which in turn help in enhancing the quality and productivity.
82
13983
Cluster Algorithm for Genetic Diversity
Abstract:
With the hardware technology advancing, the cost of storing is decreasing. Thus there is an urgent need for new techniques and tools that can intelligently and automatically assist us in transferring this data into useful knowledge. Different techniques of data mining are developed which are helpful for handling these large size databases [7]. Data mining is also finding its role in the field of biotechnology. Pedigree means the associated ancestry of a crop variety. Genetic diversity is the variation in the genetic composition of individuals within or among species. Genetic diversity depends upon the pedigree information of the varieties. Parents at lower hierarchic levels have more weightage for predicting genetic diversity as compared to the upper hierarchic levels. The weightage decreases as the level increases. For crossbreeding, the two varieties should be more and more genetically diverse so as to incorporate the useful characters of the two varieties in the newly developed variety. This paper discusses the searching and analyzing of different possible pairs of varieties selected on the basis of morphological characters, Climatic conditions and Nutrients so as to obtain the most optimal pair that can produce the required crossbreed variety. An algorithm was developed to determine the genetic diversity between the selected wheat varieties. Cluster analysis technique is used for retrieving the results.
83
14119
Protein Secondary Structure Prediction
Abstract:
Protein structure determination and prediction has been a focal research subject in the field of bioinformatics due to the importance of protein structure in understanding the biological and chemical activities of organisms. The experimental methods used by biotechnologists to determine the structures of proteins demand sophisticated equipment and time. A host of computational methods are developed to predict the location of secondary structure elements in proteins for complementing or creating insights into experimental results. However, prediction accuracies of these methods rarely exceed 70%.
84
14236
Analysis of Modified Heap Sort Algorithm on Different Environment
Abstract:
In field of Computer Science and Mathematics, sorting algorithm is an algorithm that puts elements of a list in a certain order i.e. ascending or descending. Sorting is perhaps the most widely studied problem in computer science and is frequently used as a benchmark of a system-s performance. This paper presented the comparative performance study of four sorting algorithms on different platform. For each machine, it is found that the algorithm depends upon the number of elements to be sorted. In addition, as expected, results show that the relative performance of the algorithms differed on the various machines. So, algorithm performance is dependent on data size and there exists impact of hardware also.
85
14198
A Genetic Algorithm with Priority Selection for the Traveling Salesman Problem
Abstract:
The conventional GA combined with a local search algorithm, such as the 2-OPT, forms a hybrid genetic algorithm(HGA) for the traveling salesman problem (TSP). However, the geometric properties which are problem specific knowledge can be used to improve the search process of the HGA. Some tour segments (edges) of TSPs are fine while some maybe too long to appear in a short tour. This knowledge could constrain GAs to work out with fine tour segments without considering long tour segments as often. Consequently, a new algorithm is proposed, called intelligent-OPT hybrid genetic algorithm (IOHGA), to improve the GA and the 2-OPT algorithm in order to reduce the search time for the optimal solution. Based on the geometric properties, all the tour segments are assigned 2-level priorities to distinguish between good and bad genes. A simulation study was conducted to evaluate the performance of the IOHGA. The experimental results indicate that in general the IOHGA could obtain near-optimal solutions with less time and better accuracy than the hybrid genetic algorithm with simulated annealing algorithm (HGA(SA)).
86
9806
A Comparison of the Sum of Squares in Linear and Partial Linear Regression Models
Authors:
Abstract:
In this paper, estimation of the linear regression model is made by ordinary least squares method and the partially linear regression model is estimated by penalized least squares method using smoothing spline. Then, it is investigated that differences and similarity in the sum of squares related for linear regression and partial linear regression models (semi-parametric regression models). It is denoted that the sum of squares in linear regression is reduced to sum of squares in partial linear regression models. Furthermore, we indicated that various sums of squares in the linear regression are similar to different deviance statements in partial linear regression. In addition to, coefficient of the determination derived in linear regression model is easily generalized to coefficient of the determination of the partial linear regression model. For this aim, it is made two different applications. A simulated and a real data set are considered to prove the claim mentioned here. In this way, this study is supported with a simulation and a real data example.
87
6812
Device Discover: A Component for Network Management System using Simple Network Management Protocol
Abstract:
Virtually all existing networked system management tools use a Manager/Agent paradigm. That is, distributed agents are deployed on managed devices to collect local information and report it back to some management unit. Even those that use standard protocols such as SNMP fall into this model. Using standard protocol has the advantage of interoperability among devices from different vendors. However, it may not be able to provide customized information that is of interest to satisfy specific management needs. In this dissertation work, different approaches are used to collect information regarding the devices attached to a Local Area Network. An SNMP aware application is being developed that will manage the discovery procedure and will be used as data collector.
88
7059
Alcoholic Extract of Terminalia Arjuna Protects Rabbit Heart against Ischemic-Reperfusion Injury: Role of Antioxidant Enzymes and Heat Shock Protein
Abstract:
The present study was designed to investigate the cardio protective role of chronic oral administration of alcoholic extract of Terminalia arjuna in in-vivo ischemic reperfusion injury and the induction of HSP72. Rabbits, divided into three groups, and were administered with the alcoholic extract of the bark powder of Terminalia arjuna (TAAE) by oral gavage [6.75mg/kg: (T1) and 9.75mg/kg: (T2), 6 days /week for 12 weeks]. In open-chest Ketamine pentobarbitone anaesthetized rabbits, the left anterior descending coronary artery was occluded for 15 min of ischemia followed by 60 min of reperfusion. In the vehicle-treated group, ischemic-reperfusion injury (IRI) was evidenced by depression of global hemodynamic function (MAP, HR, LVEDP, peak LV (+) & (- ) (dP/dt) along with depletion of HEP compounds. Oxidative stress in IRI was evidenced by, raised levels of myocardial TBARS and depletion of endogenous myocardial antioxidants GSH, SOD and catalase. Western blot analysis showed a single band corresponding to 72 kDa in homogenates of hearts from rabbits treated with both the doses. In the alcoholic extract of the bark powder of Terminalia arjuna treatment groups, both the doses had better recovery of myocardial hemodynamic function, with significant reduction in TBARS, and rise in SOD, GSH, catalase were observed. The results of the present study suggest that the alcoholic extract of the bark powder of Terminalia arjuna in rabbit induces myocardial HSP 72 and augments myocardial endogenous antioxidants, without causing any cellular injury and offered better cardioprotection against oxidative stress associated with myocardial IR injury.
89
135
Compiler-Based Architecture for Context Aware Frameworks
Abstract:
Computers are being integrated in the various aspects of human every day life in different shapes and abilities. This fact has intensified a requirement for the software development technologies which is ability to be: 1) portable, 2) adaptable, and 3) simple to develop. This problem is also known as the Pervasive Computing Problem (PCP) which can be implemented in different ways, each has its own pros and cons and Context Oriented Programming (COP) is one of the methods to address the PCP. In this paper a design for a COP framework, a context aware framework, is presented which has eliminated weak points of a previous design based on interpreter languages, while introducing the compiler languages power in implementing these frameworks. The key point of this improvement is combining COP and Dependency Injection (DI) techniques. Both old and new frameworks are analyzed to show advantages and disadvantages. Finally a simulation of both designs is proposed to indicating that the practical results agree with the theoretical analysis while the new design runs almost 8 times faster.
90
15301
A New Model for Question Answering Systems
Abstract:
Most of the Question Answering systems composed of three main modules: question processing, document processing and answer processing. Question processing module plays an important role in QA systems. If this module doesn't work properly, it will make problems for other sections. Moreover answer processing module is an emerging topic in Question Answering, where these systems are often required to rank and validate candidate answers. These techniques aiming at finding short and precise answers are often based on the semantic classification. This paper discussed about a new model for question answering which improved two main modules, question processing and answer processing. There are two important components which are the bases of the question processing. First component is question classification that specifies types of question and answer. Second one is reformulation which converts the user's question into an understandable question by QA system in a specific domain. Answer processing module, consists of candidate answer filtering, candidate answer ordering components and also it has a validation section for interacting with user. This module makes it more suitable to find exact answer. In this paper we have described question and answer processing modules with modeling, implementing and evaluating the system. System implemented in two versions. Results show that 'Version No.1' gave correct answer to 70% of questions (30 correct answers to 50 asked questions) and 'version No.2' gave correct answers to 94% of questions (47 correct answers to 50 asked questions).
91
1918
Application of Katz Family of Distributions for Detecting and Testing Overdispersion in Poisson Regression Models
Abstract:
The Poisson regression model is often used as a first model for count data with covariates. However, the model requires equidispersion, which might not be valid for the data set under consideration. In many distributions, variance has a specific function form, which is called nominal variance. Sometimes, in a random sample, the sample variance is greater than nominal variance, which is known as overdispersion. In this case if we fit a regression model to the data the overdispersion will appear, which affects the model. Sometimes count data exhibit variation, referred to as overdispersion or underdispersion, resulting in the lack of fit of Poisson model. Score tests have been commonly used to detect overdispersion in the data. In this paper, we provide a test for overdispersion in Poisson model using Katz family of distribution. Our setup has two extensions: First, Katz family of distribution is employed as an extension of the Poisson distribution. Second the mean- variance structure of the Poisson model is given by o2 = u + cu r for arbitrary but fixed r . We drive a local score test for testing H0 : C =0 . At the end, effects of the overdispersion will be considered by using the accident data in Iran that has a high mortality rate in this matter.
92
15409
Low Power Approach for Decimation Filter Hardware Realization
Abstract:
There are multiple ways to implement a decimator filter. This paper addresses usage of CIC (cascaded-integrator-comb) filter and HB (half band) filter as the decimator filter to reduce the frequency sample rate by factor of 64 and detail of the implementation step to realize this design in hardware. Low power design approach for CIC filter and half band filter will be discussed. The filter design is implemented through MATLAB system modeling, ASIC (application specific integrated circuit) design flow and verified using a FPGA (field programmable gate array) board and MATLAB analysis.
93
6883
Digital Power Management Hardware Realization Using FPGA
Abstract:
This paper describes design of a digital feedback loop for a low switching frequency dc-dc switching converters. Low switching frequencies were selected in this design. A look up table for the digital PID (proportional integrator differentiator) compensator was implemented using Altera Stratix II with built-in ADC (analog-to-digital converter) to achieve this hardware realization. Design guidelines are given for the PID compensator, high frequency DPWM (digital pulse width modulator) and moving average filter.
94
5820
Wireless Healthcare Monitoring System for Home
Abstract:
A healthcare monitoring system is presented in this paper. This system is based on ultra-low power sensor nodes and a personal server, which is based on hardware and software extensions to a Personal Digital Assistant (PDA)/Smartphone. The sensor node collects data from the body of a patient and sends it to the personal server where the data is processed, displayed and made ready to be sent to a healthcare network, if necessary. The personal server consists of a compact low power receiver module and equipped with a Smartphone software. The receiver module takes less than 30 × 30 mm board size and consumes approximately 25 mA in active mode.
95
14898
Voltage Stability Investigation of Grid Connected Wind Farm
Abstract:
At present, it is very common to find renewable energy resources, especially wind power, connected to distribution systems. The impact of this wind power on voltage distribution levels has been addressed in the literature. The majority of this works deals with the determination of the maximum active and reactive power that is possible to be connected on a system load bus, until the voltage at that bus reaches the voltage collapse point. It is done by the traditional methods of PV curves reported in many references. Theoretical expression of maximum power limited by voltage stability transfer through a grid is formulated using an exact representation of distribution line with ABCD parameters. The expression is used to plot PV curves at various power factors of a radial system. Limited values of reactive power can be obtained. This paper presents a method to study the relationship between the active power and voltage (PV) at the load bus to identify the voltage stability limit. It is a foundation to build a permitted working operation region in complying with the voltage stability limit at the point of common coupling (PCC) connected wind farm.
96
12855
Temporal Change of Fractal Dimension of Explosion Earthquakes and Harmonic Tremors at Semeru Volcano, East Java, Indonesia, using Critical Exponent Method
Abstract:
Fractal analyses of successive event of explosion earthquake and harmonic tremor recorded at Semeru volcano were carried out to investigate the dynamical system regarding to their generating mechanism. The explosive eruptions accompanied by explosion earthquakes and following volcanic tremor which are generated by continuous emission of volcanic ash. The fractal dimension of successive event of explosion and harmonic tremor was estimated by Critical Exponent Method (CEM). It was found that the method yield a higher fractal dimension of explosion earthquakes and gradually decrease during the occurrence of harmonic tremor, and can be considerably as correlated complexity of the source mechanism from the variance of fractal dimension.
97
2765
Comparative Evaluation of Adaptive and Conventional Distance Relay for Parallel Transmission Line with Mutual Coupling
Abstract:
This paper presents the development of adaptive distance relay for protection of parallel transmission line with mutual coupling. The proposed adaptive relay, automatically adjusts its operation based on the acquisition of the data from distance relay of adjacent line and status of adjacent line from line circuit breaker IED (Intelligent Electronic Device). The zero sequence current of the adjacent parallel transmission line is used to compute zero sequence current ratio and the mutual coupling effect is fully compensated. The relay adapts to changing circumstances, like failure in communication from other relays and non - availability of adjacent transmission line. The performance of the proposed adaptive relay is tested using steady state and dynamic test procedures. The fault transients are obtained by simulating a realistic parallel transmission line system with mutual coupling effect in PSCAD. The evaluation test results show the efficacy of adaptive distance relay over the conventional distance relay.
98
9597
Hippocratic Database : A Privacy-Aware Database
Abstract:
Nowadays, organizations and business has several motivating factors to protect an individual-s privacy. Confidentiality refers to type of sharing information to third parties. This is always referring to private information, especially for personal information that usually needs to keep as a private. Because of the important of privacy concerns today, we need to design a database system that suits with privacy. Agrawal et. al. has introduced Hippocratic Database also we refer here as a privacy-aware database. This paper will explain how HD can be a future trend for web-based application to enhance their privacy level of trustworthiness among internet users.
99
5140
A uniqueness theorem for a boundary value problem
Abstract:
We prove the existence of a solution for the nonlinear third-order boundary value problem. the technics used here are Green-s function and fixed point theorem in banach space.
100
12660
Some properties of superfuzzy subset of a fuzzy subset
Abstract:
In this paper, we define permutable and mutually permutable fuzzy subgroups of a group. Then we study their relation with permutable and mutually permutable subgroups of a group. Also we study some properties of fuzzy quasinormal subgroup. We define superfuzzy subset of a fuzzy subset and we study some properties of superfuzzy subset of a fuzzy subset.
101
9404
RBF Based Face Recognition and Expression Analysis
Abstract:
Facial recognition and expression analysis is rapidly becoming an area of intense interest in computer science and humancomputer interaction design communities. The most expressive way humans display emotions is through facial expressions. In this paper skin and non-skin pixels were separated. Face regions were extracted from the detected skin regions. Facial expressions are analyzed from facial images by applying Gabor wavelet transform (GWT) and Discrete Cosine Transform (DCT) on face images. Radial Basis Function (RBF) Network is used to identify the person and to classify the facial expressions. Our method reliably works even with faces, which carry heavy expressions.
102
2741
A Neural Network Based Facial Expression Analysis using Gabor Wavelets
Abstract:
Facial expression analysis is rapidly becoming an area of intense interest in computer science and human-computer interaction design communities. The most expressive way humans display emotions is through facial expressions. In this paper we present a method to analyze facial expression from images by applying Gabor wavelet transform (GWT) and Discrete Cosine Transform (DCT) on face images. Radial Basis Function (RBF) Network is used to classify the facial expressions. As a second stage, the images are preprocessed to enhance the edge details and non uniform down sampling is done to reduce the computational complexity and processing time. Our method reliably works even with faces, which carry heavy expressions.
103
8761
Analysis on Modeling and Simulation of Low Cost MEMS Accelerometer ADXL202
Abstract:

In this paper, we describe the simulation of low cost MEMS accelerometer ADXL202 model to gain the required output using MATLAB/SIMULINK. It contains theory of operation of ADXL202 and its applications. In this paper, the design procedure for using the ADXL202 with a duty cycle output is described and it includes selecting a duty cycle period and a filter capacitor. A proper design will take into account the application requirements for bandwidth, signal resolution and acquisition time. It describes the filter capacitor selection of ADXL202 to reduce the noise and improve the resolution of accelerometer. Finally, simulation results for desired output signals for the system and noise reduction are described.

104
12071
Software Implementation of Obstacle Detection and Avoidance System for Wheeled Mobile Robot
Abstract:
Nowadays, Wheeled Mobile Robots (WMRs) are built and the control system that used to control them are made by Electronic Engineers. Depend on their desire design of WMR, Technicians made used of Microcontrollers as controlling machines and DC Motors for motion control. Autonomous robotic vehicle guidance for indoor navigation has been developed for Mobile Industrial Robot model. The resulting design will navigate the environs in a building without the need of human intervention. The guidance system consists of infrared sensors for obstacle detection, range determination and avoidance. It can detect the obstacles within the range 10 to 80 cm. This paper represents mainly on software implementation of obstacle detection and avoidance system for Wheeled Mobile Robot. This system consists of infrared sensors and microcontroller. In this system three infrared sensors are used for left, front and right. In this robot system, the input signal is received from sensor circuit and PIC is operated according to the received sensor-s signal. The infrared sensor reading is taken and processed to avoid the obstacles. The 5V power supply is used to operate PIC board and sensor circuit board. The obstacle avoidance algorithm is simply evaluated on PIC 16F877 microcontroller based mobile robot. The type of infrared sensor is GP2D12 distance measuring sensor. The desired goal of this system is to avoid obstacles along its path and to determine the distance.
105
14596
Application of an Inertial Navigation System to the Quad-rotor UAV using MEMS Sensors
Abstract:
Inertial navigation systems are used in many situations where the use of an external reference to measure position is impractical or unreliable. Typical inertial navigation systems used in aeronautics and marine applications are highly advanced pieces of equipment costing thousands of dollars. However, inexpensive accelerometers and angular rate sensors (gyros) can be used to make a far less accurate inertial navigation unit for around $100. The design implemented in this report uses one Analog Devices MEMS rate gyro, two dual-axis MEMS accelerometers, and a Microchip PIC 8-bit microcontroller. Proper calibration is explored as a means of improving the system accuracy, as the parameters of the sensors used are not as stable or as closely specified as their more advanced counterparts.
106
4516
Parallel-computing approach for FFT implementation on digital signal processor(DSP)
Abstract:
An efficient parallel form in digital signal processor can improve the algorithm performance. The butterfly structure is an important role in fast Fourier transform (FFT), because its symmetry form is suitable for hardware implementation. Although it can perform a symmetric structure, the performance will be reduced under the data-dependent flow characteristic. Even though recent research which call as novel memory reference reduction methods (NMRRM) for FFT focus on reduce memory reference in twiddle factor, the data-dependent property still exists. In this paper, we propose a parallel-computing approach for FFT implementation on digital signal processor (DSP) which is based on data-independent property and still hold the property of low-memory reference. The proposed method combines final two steps in NMRRM FFT to perform a novel data-independent structure, besides it is very suitable for multi-operation-unit digital signal processor and dual-core system. We have applied the proposed method of radix-2 FFT algorithm in low memory reference on TI TMSC320C64x DSP. Experimental results show the method can reduce 33.8% clock cycles comparing with the NMRRM FFT implementation and keep the low-memory reference property.
107
169
Analysis of Phase Lead Compensator Design for Laser Guided Missile System using MATLAB
Abstract:
The paper describes the result comparisons that were developed for the phase lead compensator design using Nichols Chart. The implementation of classical experiments as MATLAB mfiles is described. Laser guided missile control system can be designed to gain insight into a variety of concepts, including stabilization of unstable systems, compensation properties, Nichols analysis and Bode diagram. The analysis has resulted in a number of important conclusions for the design of a new generation of control support systems.
108
382
An Intelligent Fuzzy-Neural Diagnostic System for Osteoporosis Risk Assessment
Abstract:
In this article, we propose an Intelligent Medical Diagnostic System (IMDS) accessible through common web-based interface, to on-line perform initial screening for osteoporosis. The fundamental approaches which construct the proposed system are mainly based on the fuzzy-neural theory, which can exhibit superiority over other conventional technologies in many fields. In diagnosis process, users simply answer a series of directed questions to the system, and then they will immediately receive a list of results which represents the risk degrees of osteoporosis. According to clinical testing results, it is shown that the proposed system can provide the general public or even health care providers with a convenient, reliable, inexpensive approach to osteoporosis risk assessment.
109
13260
Architecture of Speech-based registration system
Abstract:
In this era of technology, fueled by the pervasive usage of the internet, security is a prime concern. The number of new attacks by the so-called “bots", which are automated programs, is increasing at an alarming rate. They are most likely to attack online registration systems. Technology, called “CAPTCHA" (Completely Automated Public Turing test to tell Computers and Humans Apart) do exist, which can differentiate between automated programs and humans and prevent replay attacks. Traditionally CAPTCHA-s have been implemented with the challenge involved in recognizing textual images and reproducing the same. We propose an approach where the visual challenge has to be read out from which randomly selected keywords are used to verify the correctness of spoken text and in turn detect the presence of human. This is supplemented with a speaker recognition system which can identify the speaker also. Thus, this framework fulfills both the objectives – it can determine whether the user is a human or not and if it is a human, it can verify its identity.
110
5078
Region-Based Segmentation of Generic Video Scenes Indexing
Abstract:
In this work we develop an object extraction method and propose efficient algorithms for object motion characterization. The set of proposed tools serves as a basis for development of objectbased functionalities for manipulation of video content. The estimators by different algorithms are compared in terms of quality and performance and tested on real video sequences. The proposed method will be useful for the latest standards of encoding and description of multimedia content – MPEG4 and MPEG7.
111
11090
Constraint Based Frequent Pattern Mining Technique for Solving GCS Problem
Abstract:
Generalized Center String (GCS) problem are generalized from Common Approximate Substring problem and Common substring problems. GCS are known to be NP-hard allowing the problems lies in the explosion of potential candidates. Finding longest center string without concerning the sequence that may not contain any motifs is not known in advance in any particular biological gene process. GCS solved by frequent pattern-mining techniques and known to be fixed parameter tractable based on the fixed input sequence length and symbol set size. Efficient method known as Bpriori algorithms can solve GCS with reasonable time/space complexities. Bpriori 2 and Bpriori 3-2 algorithm are been proposed of any length and any positions of all their instances in input sequences. In this paper, we reduced the time/space complexity of Bpriori algorithm by Constrained Based Frequent Pattern mining (CBFP) technique which integrates the idea of Constraint Based Mining and FP-tree mining. CBFP mining technique solves the GCS problem works for all center string of any length, but also for the positions of all their mutated copies of input sequence. CBFP mining technique construct TRIE like with FP tree to represent the mutated copies of center string of any length, along with constraints to restraint growth of the consensus tree. The complexity analysis for Constrained Based FP mining technique and Bpriori algorithm is done based on the worst case and average case approach. Algorithm's correctness compared with the Bpriori algorithm using artificial data is shown.
112
776
Low Jitter ADPLL based Clock Generator for High Speed SoC Applications
Abstract:
An efficient architecture for low jitter All Digital Phase Locked Loop (ADPLL) suitable for high speed SoC applications is presented in this paper. The ADPLL is designed using standard cells and described by Hardware Description Language (HDL). The ADPLL implemented in a 90 nm CMOS process can operate from 10 to 200 MHz and achieve worst case frequency acquisition in 14 reference clock cycles. The simulation result shows that PLL has cycle to cycle jitter of 164 ps and period jitter of 100 ps at 100MHz. Since the digitally controlled oscillator (DCO) can achieve both high resolution and wide frequency range, it can meet the demands of system-level integration. The proposed ADPLL can easily be ported to different processes in a short time. Thus, it can reduce the design time and design complexity of the ADPLL, making it very suitable for System-on-Chip (SoC) applications.
113
6575
Fuzzy Logic Reasoning to Control Mobile Robot on Pre-defined Strip Path
Abstract:
The mobile robot is a small four-wheeled mobile platform, which was controlled by a micro-controller. The robot could sense its surroundings with the aid of various electronic sensors while mechanical actuators were used to move it around. Robot behaviour was determined by the program, which was loaded to the microcontroller. In that way, it could be used as a general robotics experimental platform. The autonomous mobile robot was designed and built in order to perform various navigation algorithms. The design consisted of two main sections: Electronic analysis of the various robot sensors and Programming techniques used to interface the sensors with the robot-s microcontroller. In this paper it-s shown that the path-guiding robot with IR sensors and obstacle detection is using IR proximity sensors. The predefined path is having varied turns, the fuzzy reasoning take care of speed to keep mobile robot in the defined path. The results are proved experimentally and the surface viewer graph is obtained from the Mat Lab.
114
10871
Analysis of Variable Frequency Three Phase Induction Motor Drive
Abstract:
AC motor drives are widely used to control the speed of conveyor systems, blower speeds, pump speeds, machine tool speeds, and other applications that require variable speed with variable torque. The complete system consists of an ac voltage input that is put through a diode bridge rectifier to produce a dc output which across a shunt capacitor, this will, in turn, feed the PWM inverter. The PWM inverter is controlled to produce a desired sinusoidal voltage at a particular frequency, which is filtered by the use of an inductor in series and capacitor in parallel and then through to the squirrel cage induction motor.
115
1511
Fuzzy Mathematical Morphology approach in Image Processing
Abstract:
Morphological operators transform the original image into another image through the interaction with the other image of certain shape and size which is known as the structure element. Mathematical morphology provides a systematic approach to analyze the geometric characteristics of signals or images, and has been applied widely too many applications such as edge detection, objection segmentation, noise suppression and so on. Fuzzy Mathematical Morphology aims to extend the binary morphological operators to grey-level images. In order to define the basic morphological operations such as fuzzy erosion, dilation, opening and closing, a general method based upon fuzzy implication and inclusion grade operators is introduced. The fuzzy morphological operations extend the ordinary morphological operations by using fuzzy sets where for fuzzy sets, the union operation is replaced by a maximum operation, and the intersection operation is replaced by a minimum operation. In this work, it consists of two articles. In the first one, fuzzy set theory, fuzzy Mathematical morphology which is based on fuzzy logic and fuzzy set theory; fuzzy Mathematical operations and their properties will be studied in details. As a second part, the application of fuzziness in Mathematical morphology in practical work such as image processing will be discussed with the illustration problems.
116
13886
Bayesian decision approach to protection on the flood event in upper Ayeyarwady River,Myanmar
Abstract:
This paper introduces the foundations of Bayesian probability theory and Bayesian decision method. The main goal of Bayesian decision theory is to minimize the expected loss of a decision or minimize the expected risk. The purposes of this study are to review the decision process on the issue of flood occurrences and to suggest possible process for decision improvement. This study examines the problem structure of flood occurrences and theoretically explicates the decision-analytic approach based on Bayesian decision theory and application to flood occurrences in Environmental Engineering. In this study, we will discuss about the flood occurrences upon an annual maximum water level in cm, 43-year record available from 1965 to 2007 at the gauging station of Sagaing on the Ayeyarwady River with the drainage area - 120193 sq km by using Bayesian decision method. As a result, we will discuss the loss and risk of vast areas of agricultural land whether which will be inundated or not in the coming year based on the two standard maximum water levels during 43 years. And also we forecast about that lands will be safe from flood water during the next 10 years.
117
747
Tool Tracker: A toolkit ensembling useful online networking tools for efficient management and operation of a network
Abstract:
Tool Tracker is a client-server based application. It is essentially a catalogue of various network monitoring and management tools that are available online. There is a database maintained on the server side that contains the information about various tools. Several clients can access this information simultaneously and utilize this information. The various categories of tools considered are packet sniffers, port mappers, port scanners, encryption tools, and vulnerability scanners etc for the development of this application. This application provides a front end through which the user can invoke any tool from a central repository for the purpose of packet sniffing, port scanning, network analysis etc. Apart from the tool, its description and the help files associated with it would also be stored in the central repository. This facility will enable the user to view the documentation pertaining to the tool without having to download and install the tool. The application would update the central repository with the latest versions of the tools. The application would inform the user about the availability of a newer version of the tool currently being used and give the choice of installing the newer version to the user. Thus ToolTracker provides any network administrator that much needed abstraction and ease-ofuse with respect to the tools that he can use to efficiently monitor a network.
118
9953
Trimmed Mean as an Adaptive Robust Estimator of a Location Parameter for Weibull Distribution
Abstract:
One of the purposes of the robust method of estimation is to reduce the influence of outliers in the data, on the estimates. The outliers arise from gross errors or contamination from distributions with long tails. The trimmed mean is a robust estimate. This means that it is not sensitive to violation of distributional assumptions of the data. It is called an adaptive estimate when the trimming proportion is determined from the data rather than being fixed a “priori-. The main objective of this study is to find out the robustness properties of the adaptive trimmed means in terms of efficiency, high breakdown point and influence function. Specifically, it seeks to find out the magnitude of the trimming proportion of the adaptive trimmed mean which will yield efficient and robust estimates of the parameter for data which follow a modified Weibull distribution with parameter λ = 1/2 , where the trimming proportion is determined by a ratio of two trimmed means defined as the tail length. Secondly, the asymptotic properties of the tail length and the trimmed means are also investigated. Finally, a comparison is made on the efficiency of the adaptive trimmed means in terms of the standard deviation for the trimming proportions and when these were fixed a “priori". The asymptotic tail lengths defined as the ratio of two trimmed means and the asymptotic variances were computed by using the formulas derived. While the values of the standard deviations for the derived tail lengths for data of size 40 simulated from a Weibull distribution were computed for 100 iterations using a computer program written in Pascal language. The findings of the study revealed that the tail lengths of the Weibull distribution increase in magnitudes as the trimming proportions increase, the measure of the tail length and the adaptive trimmed mean are asymptotically independent as the number of observations n becomes very large or approaching infinity, the tail length is asymptotically distributed as the ratio of two independent normal random variables, and the asymptotic variances decrease as the trimming proportions increase. The simulation study revealed empirically that the standard error of the adaptive trimmed mean using the ratio of tail lengths is relatively smaller for different values of trimming proportions than its counterpart when the trimming proportions were fixed a 'priori'.
119
6548
Impact of Computer-Mediated Communication on Virtual Teams- Performance: An Empirical Study
Abstract:
In a complex project environment, project teams face multi-dimensional communication problems that can ultimately lead to project breakdown. Team Performance varies in Face-to-Face (FTF) environment versus groups working remotely in a computermediated communication (CMC) environment. A brief review of the Input_Process_Output model suggested by James E. Driskell, Paul H. Radtke and Eduardo Salas in “Virtual Teams: Effects of Technological Mediation on Team Performance (2003)", has been done to develop the basis of this research. This model theoretically analyzes the effects of technological mediation on team processes, such as, cohesiveness, status and authority relations, counternormative behavior and communication. An empirical study described in this paper has been undertaken to test the “cohesiveness" of diverse project teams in a multi-national organization. This study uses both quantitative and qualitative techniques for data gathering and analysis. These techniques include interviews, questionnaires for data collection and graphical data representation for analyzing the collected data. Computer-mediated technology may impact team performance because of difference in cohesiveness among teams and this difference may be moderated by factors, such as, the type of communication environment, the type of task and the temporal context of the team. Based on the reviewed model, sets of hypotheses are devised and tested. This research, reports on a study that compared team cohesiveness among virtual teams using CMC and non-CMC communication mediums. The findings suggest that CMC can help virtual teams increase team cohesiveness among their members, making CMC an effective medium for increasing productivity and team performance.
120
7092
Performance Assessment of Computational Gridon Weather Indices from HOAPS Data
Abstract:
Long term rainfall analysis and prediction is a challenging task especially in the modern world where the impact of global warming is creating complications in environmental issues. These factors which are data intensive require high performance computational modeling for accurate prediction. This research paper describes a prototype which is designed and developed on grid environment using a number of coupled software infrastructural building blocks. This grid enabled system provides the demanding computational power, efficiency, resources, user-friendly interface, secured job submission and high throughput. The results obtained using sequential execution and grid enabled execution shows that computational performance has enhanced among 36% to 75%, for decade of climate parameters. Large variation in performance can be attributed to varying degree of computational resources available for job execution. Grid Computing enables the dynamic runtime selection, sharing and aggregation of distributed and autonomous resources which plays an important role not only in business, but also in scientific implications and social surroundings. This research paper attempts to explore the grid enabled computing capabilities on weather indices from HOAPS data for climate impact modeling and change detection.
121
9318
Abrupt Scene Change Detection
Abstract:
A number of automated shot-change detection methods for indexing a video sequence to facilitate browsing and retrieval have been proposed in recent years. This paper emphasizes on the simulation of video shot boundary detection using one of the methods of the color histogram wherein scaling of the histogram metrics is an added feature. The difference between the histograms of two consecutive frames is evaluated resulting in the metrics. Further scaling of the metrics is performed to avoid ambiguity and to enable the choice of apt threshold for any type of videos which involves minor error due to flashlight, camera motion, etc. Two sample videos are used here with resolution of 352 X 240 pixels using color histogram approach in the uncompressed media. An attempt is made for the retrieval of color video. The simulation is performed for the abrupt change in video which yields 90% recall and precision value.
122
433
A New Approach for Mobile Agent Security
Abstract:
A mobile agent is a software which performs an action autonomously and independently as a person or an organizations assistance. Mobile agents are used for searching information, retrieval information, filtering, intruder recognition in networks, and so on. One of the important issues of mobile agent is their security. It must consider different security issues in effective and secured usage of mobile agent. One of those issues is the integrity-s protection of mobile agents. In this paper, the advantages and disadvantages of each method, after reviewing the existing methods, is examined. Regarding to this matter that each method has its own advantage or disadvantage, it seems that by combining these methods, one can reach to a better method for protecting the integrity of mobile agents. Therefore, this method is provided in this paper and then is evaluated in terms of existing method. Finally, this method is simulated and its results are the sign of improving the possibility of integrity-s protection of mobile agents.
123
568
Neural Networks for Short Term Wind Speed Prediction
Abstract:
Predicting short term wind speed is essential in order to prevent systems in-action from the effects of strong winds. It also helps in using wind energy as an alternative source of energy, mainly for Electrical power generation. Wind speed prediction has applications in Military and civilian fields for air traffic control, rocket launch, ship navigation etc. The wind speed in near future depends on the values of other meteorological variables, such as atmospheric pressure, moisture content, humidity, rainfall etc. The values of these parameters are obtained from a nearest weather station and are used to train various forms of neural networks. The trained model of neural networks is validated using a similar set of data. The model is then used to predict the wind speed, using the same meteorological information. This paper reports an Artificial Neural Network model for short term wind speed prediction, which uses back propagation algorithm.
124
9636
Using Multimedia in Computer Based Learning(CBL)A Case Study : Teaching Science to Student
Abstract:
Regarding to the fast growth of computer, internet, and virtual learning in our country (Iran) and need computer-based learning systems and multimedia tools as an essential part of such education, designing and implementing such systems would help teach different field such as science. This paper describes the basic principle of multimedia. At the end, with a description of learning science to the infant students, the method of this system will be explained
125
15818
Wireless Network Visualization and Indoor Empirical Propagation Model for a Campus WI-FI Network
Abstract:
With the increasing use of mobile computing devices such as PDAs, laptops, and an expansion of Wireless Local Area Networks (WLAN), there is growing interest in optimizing the WLAN infrastructure so as to increase productivity and efficiency in various colleges and office campuses with carrying out a cost effective infrastructure model. This paper describes an indoor propagation model which can be used to predict the signal strength taking into consideration propagation path losses and a comparison with an existing propagation model is also implemented. Simulation of an optimum ubiquitous Wi-Fi network area plan for R.V.College of Engineering campus in bangalore is also implemented.
126
15939
On the Parameter Optimization of Fuzzy Inference Systems
Abstract:
Nowadays, more engineering systems are using some kind of Artificial Intelligence (AI) for the development of their processes. Some well-known AI techniques include artificial neural nets, fuzzy inference systems, and neuro-fuzzy inference systems among others. Furthermore, many decision-making applications base their intelligent processes on Fuzzy Logic; due to the Fuzzy Inference Systems (FIS) capability to deal with problems that are based on user knowledge and experience. Also, knowing that users have a wide variety of distinctiveness, and generally, provide uncertain data, this information can be used and properly processed by a FIS. To properly consider uncertainty and inexact system input values, FIS normally use Membership Functions (MF) that represent a degree of user satisfaction on certain conditions and/or constraints. In order to define the parameters of the MFs, the knowledge from experts in the field is very important. This knowledge defines the MF shape to process the user inputs and through fuzzy reasoning and inference mechanisms, the FIS can provide an “appropriate" output. However an important issue immediately arises: How can it be assured that the obtained output is the optimum solution? How can it be guaranteed that each MF has an optimum shape? A viable solution to these questions is through the MFs parameter optimization. In this Paper a novel parameter optimization process is presented. The process for FIS parameter optimization consists of the five simple steps that can be easily realized off-line. Here the proposed process of FIS parameter optimization it is demonstrated by its implementation on an Intelligent Interface section dealing with the on-line customization / personalization of internet portals applied to E-commerce.
127
15658
Multivariate High Order Fuzzy Time Series Forecasting for Car Road Accidents
Abstract:
In this paper, we have presented a new multivariate fuzzy time series forecasting method. This method assumes mfactors with one main factor of interest. History of past three years is used for making new forecasts. This new method is applied in forecasting total number of car accidents in Belgium using four secondary factors. We also make comparison of our proposed method with existing methods of fuzzy time series forecasting. Experimentally, it is shown that our proposed method perform better than existing fuzzy time series forecasting methods. Practically, actuaries are interested in analysis of the patterns of causalities in road accidents. Thus using fuzzy time series, actuaries can define fuzzy premium and fuzzy underwriting of car insurance and life insurance for car insurance. National Institute of Statistics, Belgium provides region of risk classification for each road. Thus using this risk classification, we can predict premium rate and underwriting of insurance policy holders.
128
3124
A Text Mining Technique Using Association Rules Extraction
Abstract:

This paper describes text mining technique for automatically extracting association rules from collections of textual documents. The technique called, Extracting Association Rules from Text (EART). It depends on keyword features for discover association rules amongst keywords labeling the documents. In this work, the EART system ignores the order in which the words occur, but instead focusing on the words and their statistical distributions in documents. The main contributions of the technique are that it integrates XML technology with Information Retrieval scheme (TFIDF) (for keyword/feature selection that automatically selects the most discriminative keywords for use in association rules generation) and use Data Mining technique for association rules discovery. It consists of three phases: Text Preprocessing phase (transformation, filtration, stemming and indexing of the documents), Association Rule Mining (ARM) phase (applying our designed algorithm for Generating Association Rules based on Weighting scheme GARW) and Visualization phase (visualization of results). Experiments applied on WebPages news documents related to the outbreak of the bird flu disease. The extracted association rules contain important features and describe the informative news included in the documents collection. The performance of the EART system compared with another system that uses the Apriori algorithm throughout the execution time and evaluating extracted association rules.

129
3405
Digital filters for Hot-Mix Asphalt Complex Modulus Test Data Using Genetic Algorithm Strategies
Abstract:
The dynamic or complex modulus test is considered to be a mechanistically based laboratory test to reliably characterize the strength and load-resistance of Hot-Mix Asphalt (HMA) mixes used in the construction of roads. The most common observation is that the data collected from these tests are often noisy and somewhat non-sinusoidal. This hampers accurate analysis of the data to obtain engineering insight. The goal of the work presented in this paper is to develop and compare automated evolutionary computational techniques to filter test noise in the collection of data for the HMA complex modulus test. The results showed that the Covariance Matrix Adaptation-Evolutionary Strategy (CMA-ES) approach is computationally efficient for filtering data obtained from the HMA complex modulus test.
130
449
Meta Model Based EA for Complex Optimization
Abstract:
Evolutionary Algorithms are population-based, stochastic search techniques, widely used as efficient global optimizers. However, many real life optimization problems often require finding optimal solution to complex high dimensional, multimodal problems involving computationally very expensive fitness function evaluations. Use of evolutionary algorithms in such problem domains is thus practically prohibitive. An attractive alternative is to build meta models or use an approximation of the actual fitness functions to be evaluated. These meta models are order of magnitude cheaper to evaluate compared to the actual function evaluation. Many regression and interpolation tools are available to build such meta models. This paper briefly discusses the architectures and use of such meta-modeling tools in an evolutionary optimization context. We further present two evolutionary algorithm frameworks which involve use of meta models for fitness function evaluation. The first framework, namely the Dynamic Approximate Fitness based Hybrid EA (DAFHEA) model [14] reduces computation time by controlled use of meta-models (in this case approximate model generated by Support Vector Machine regression) to partially replace the actual function evaluation by approximate function evaluation. However, the underlying assumption in DAFHEA is that the training samples for the metamodel are generated from a single uniform model. This does not take into account uncertain scenarios involving noisy fitness functions. The second model, DAFHEA-II, an enhanced version of the original DAFHEA framework, incorporates a multiple-model based learning approach for the support vector machine approximator to handle noisy functions [15]. Empirical results obtained by evaluating the frameworks using several benchmark functions demonstrate their efficiency
131
10722
An Improved Conjugate Gradient Based Learning Algorithm for Back Propagation Neural Networks
Abstract:

The conjugate gradient optimization algorithm is combined with the modified back propagation algorithm to yield a computationally efficient algorithm for training multilayer perceptron (MLP) networks (CGFR/AG). The computational efficiency is enhanced by adaptively modifying initial search direction as described in the following steps: (1) Modification on standard back propagation algorithm by introducing a gain variation term in the activation function, (2) Calculation of the gradient descent of error with respect to the weights and gains values and (3) the determination of a new search direction by using information calculated in step (2). The performance of the proposed method is demonstrated by comparing accuracy and computation time with the conjugate gradient algorithm used in MATLAB neural network toolbox. The results show that the computational efficiency of the proposed method was better than the standard conjugate gradient algorithm.

132
2162
Mining News Sites to Create Special Domain News Collections
Abstract:
We present a method to create special domain collections from news sites. The method only requires a single sample article as a seed. No prior corpus statistics are needed and the method is applicable to multiple languages. We examine various similarity measures and the creation of document collections for English and Japanese. The main contributions are as follows. First, the algorithm can build special domain collections from as little as one sample document. Second, unlike other algorithms it does not require a second “general" corpus to compute statistics. Third, in our testing the algorithm outperformed others in creating collections made up of highly relevant articles.
133
6000
Enhanced Clustering Analysis and Visualization Using Kohonen-s Self-Organizing Feature Map Networks
Abstract:
Cluster analysis is the name given to a diverse collection of techniques that can be used to classify objects (e.g. individuals, quadrats, species etc). While Kohonen-s Self-Organizing Feature Map (SOFM) or Self-Organizing Map (SOM) networks have been successfully applied as a classification tool to various problem domains, including speech recognition, image data compression, image or character recognition, robot control and medical diagnosis, its potential as a robust substitute for clustering analysis remains relatively unresearched. SOM networks combine competitive learning with dimensionality reduction by smoothing the clusters with respect to an a priori grid and provide a powerful tool for data visualization. In this paper, SOM is used for creating a toroidal mapping of two-dimensional lattice to perform cluster analysis on results of a chemical analysis of wines produced in the same region in Italy but derived from three different cultivators, referred to as the “wine recognition data" located in the University of California-Irvine database. The results are encouraging and it is believed that SOM would make an appealing and powerful decision-support system tool for clustering tasks and for data visualization.
134
10797
Machine Learning in Production Systems Design Using Genetic Algorithms
Abstract:
To create a solution for a specific problem in machine learning, the solution is constructed from the data or by use a search method. Genetic algorithms are a model of machine learning that can be used to find nearest optimal solution. While the great advantage of genetic algorithms is the fact that they find a solution through evolution, this is also the biggest disadvantage. Evolution is inductive, in nature life does not evolve towards a good solution but it evolves away from bad circumstances. This can cause a species to evolve into an evolutionary dead end. In order to reduce the effect of this disadvantage we propose a new a learning tool (criteria) which can be included into the genetic algorithms generations to compare the previous population and the current population and then decide whether is effective to continue with the previous population or the current population, the proposed learning tool is called as Keeping Efficient Population (KEP). We applied a GA based on KEP to the production line layout problem, as a result KEP keep the evaluation direction increases and stops any deviation in the evaluation.
135
4871
Validity Domains of Beams Behavioural Models: Efficiency and Reduction with Artificial Neural Networks
Abstract:

In a particular case of behavioural model reduction by ANNs, a validity domain shortening has been found. In mechanics, as in other domains, the notion of validity domain allows the engineer to choose a valid model for a particular analysis or simulation. In the study of mechanical behaviour for a cantilever beam (using linear and non-linear models), Multi-Layer Perceptron (MLP) Backpropagation (BP) networks have been applied as model reduction technique. This reduced model is constructed to be more efficient than the non-reduced model. Within a less extended domain, the ANN reduced model estimates correctly the non-linear response, with a lower computational cost. It has been found that the neural network model is not able to approximate the linear behaviour while it does approximate the non-linear behaviour very well. The details of the case are provided with an example of the cantilever beam behaviour modelling.

136
10253
The Labeled Classification and its Application
Abstract:
This paper presents and evaluates a new classification method that aims to improve classifiers performances and speed up their training process. The proposed approach, called labeled classification, seeks to improve convergence of the BP (Back propagation) algorithm through the addition of an extra feature (labels) to all training examples. To classify every new example, tests will be carried out each label. The simplicity of implementation is the main advantage of this approach because no modifications are required in the training algorithms. Therefore, it can be used with others techniques of acceleration and stabilization. In this work, two models of the labeled classification are proposed: the LMLP (Labeled Multi Layered Perceptron) and the LNFC (Labeled Neuro Fuzzy Classifier). These models are tested using Iris, wine, texture and human thigh databases to evaluate their performances.
137
11954
Robust Artificial Neural Network Architectures
Authors:
Abstract:
Many artificial intelligence (AI) techniques are inspired by problem-solving strategies found in nature. Robustness is a key feature in many natural systems. This paper studies robustness in artificial neural networks (ANNs) and proposes several novel, nature inspired ANN architectures. The paper includes encouraging results from experimental studies on these networks showing increased robustness.
138
4165
Asynchronous Parallel Distributed Genetic Algorithm with Elite Migration
Abstract:
In most of the popular implementation of Parallel GAs the whole population is divided into a set of subpopulations, each subpopulation executes GA independently and some individuals are migrated at fixed intervals on a ring topology. In these studies, the migrations usually occur 'synchronously' among subpopulations. Therefore, CPUs are not used efficiently and the communication do not occur efficiently either. A few studies tried asynchronous migration but it is hard to implement and setting proper parameter values is difficult. The aim of our research is to develop a migration method which is easy to implement, which is easy to set parameter values, and which reduces communication traffic. In this paper, we propose a traffic reduction method for the Asynchronous Parallel Distributed GA by migration of elites only. This is a Server-Client model. Every client executes GA on a subpopulation and sends an elite information to the server. The server manages the elite information of each client and the migrations occur according to the evolution of sub-population in a client. This facilitates the reduction in communication traffic. To evaluate our proposed model, we apply it to many function optimization problems. We confirm that our proposed method performs as well as current methods, the communication traffic is less, and setting of the parameters are much easier.
139
12275
Using Data Mining for Learning and Clustering FCM
Abstract:
Fuzzy Cognitive Maps (FCMs) have successfully been applied in numerous domains to show relations between essential components. In some FCM, there are more nodes, which related to each other and more nodes means more complex in system behaviors and analysis. In this paper, a novel learning method used to construct FCMs based on historical data and by using data mining and DEMATEL method, a new method defined to reduce nodes number. This method cluster nodes in FCM based on their cause and effect behaviors.
140
10674
Thematic Role Extraction Using Shallow Parsing
Abstract:
Extracting thematic (semantic) roles is one of the major steps in representing text meaning. It refers to finding the semantic relations between a predicate and syntactic constituents in a sentence. In this paper we present a rule-based approach to extract semantic roles from Persian sentences. The system exploits a twophase architecture to (1) identify the arguments and (2) label them for each predicate. For the first phase we developed a rule based shallow parser to chunk Persian sentences and for the second phase we developed a knowledge-based system to assign 16 selected thematic roles to the chunks. The experimental results of testing each phase are shown at the end of the paper.
141
8360
Discovery of Time Series Event Patterns based onTime Constraints from Textual Data
Abstract:
This paper proposes a method that discovers time series event patterns from textual data with time information. The patterns are composed of sequences of events and each event is extracted from the textual data, where an event is characteristic content included in the textual data such as a company name, an action, and an impression of a customer. The method introduces 7 types of time constraints based on the analysis of the textual data. The method also evaluates these constraints when the frequency of a time series event pattern is calculated. We can flexibly define the time constraints for interesting combinations of events and can discover valid time series event patterns which satisfy these conditions. The paper applies the method to daily business reports collected by a sales force automation system and verifies its effectiveness through numerical experiments.
142
11348
Decision Making using Maximization of Negret
Abstract:
We analyze the problem of decision making under ignorance with regrets. Recently, Yager has developed a new method for decision making where instead of using regrets he uses another type of transformation called negrets. Basically, the negret is considered as the dual of the regret. We study this problem in detail and we suggest the use of geometric aggregation operators in this method. For doing this, we develop a different method for constructing the negret matrix where all the values are positive. The main result obtained is that now the model is able to deal with negative numbers because of the transformation done in the negret matrix. We further extent these results to another model developed also by Yager about mixing valuations and negrets. Unfortunately, in this case we are not able to deal with negative numbers because the valuations can be either positive or negative.
143
6889
Feature Based Dense Stereo Matching using Dynamic Programming and Color
Abstract:
This paper presents a new feature based dense stereo matching algorithm to obtain the dense disparity map via dynamic programming. After extraction of some proper features, we use some matching constraints such as epipolar line, disparity limit, ordering and limit of directional derivative of disparity as well. Also, a coarseto- fine multiresolution strategy is used to decrease the search space and therefore increase the accuracy and processing speed. The proposed method links the detected feature points into the chains and compares some of the feature points from different chains, to increase the matching speed. We also employ color stereo matching to increase the accuracy of the algorithm. Then after feature matching, we use the dynamic programming to obtain the dense disparity map. It differs from the classical DP methods in the stereo vision, since it employs sparse disparity map obtained from the feature based matching stage. The DP is also performed further on a scan line, between any matched two feature points on that scan line. Thus our algorithm is truly an optimization method. Our algorithm offers a good trade off in terms of accuracy and computational efficiency. Regarding the results of our experiments, the proposed algorithm increases the accuracy from 20 to 70%, and reduces the running time of the algorithm almost 70%.
144
13248
System Identification with General Dynamic Neural Networks and Network Pruning
Abstract:
This paper presents an exact pruning algorithm with adaptive pruning interval for general dynamic neural networks (GDNN). GDNNs are artificial neural networks with internal dynamics. All layers have feedback connections with time delays to the same and to all other layers. The structure of the plant is unknown, so the identification process is started with a larger network architecture than necessary. During parameter optimization with the Levenberg- Marquardt (LM) algorithm irrelevant weights of the dynamic neural network are deleted in order to find a model for the plant as simple as possible. The weights to be pruned are found by direct evaluation of the training data within a sliding time window. The influence of pruning on the identification system depends on the network architecture at pruning time and the selected weight to be deleted. As the architecture of the model is changed drastically during the identification and pruning process, it is suggested to adapt the pruning interval online. Two system identification examples show the architecture selection ability of the proposed pruning approach.
145
15952
Grid Computing in Physics and Life Sciences
Abstract:
Certain sciences such as physics, chemistry or biology, have a strong computational aspect and use computing infrastructures to advance their scientific goals. Often, high performance and/or high throughput computing infrastructures such as clusters and computational Grids are applied to satisfy computational needs. In addition, these sciences are sometimes characterised by scientific collaborations requiring resource sharing which is typically provided by Grid approaches. In this article, I discuss Grid computing approaches in High Energy Physics as well as in bioinformatics and highlight some of my experience in both scientific domains.
146
14905
Information Retrieval in the Semantic LIFE Personal Digital Memory Framework
Abstract:
Ever increasing capacities of contemporary storage devices inspire the vision to accumulate (personal) information without the need of deleting old data over a long time-span. Hence the target of SemanticLIFE project is to create a Personal Information Management system for a human lifetime data. One of the most important characteristics of the system is its dedication to retrieve information in a very efficient way. By adopting user demands regarding the reduction of ambiguities, our approach aims at a user-oriented and yet powerful enough system with a satisfactory query performance. We introduce the query system of SemanticLIFE, the Virtual Query System, which uses emerging Semantic Web technologies to fulfill users- requirements.
147
14219
An Investigation into Kanji Character Discrimination Process from EEG Signals
Abstract:
The frontal area in the brain is known to be involved in behavioral judgement. Because a Kanji character can be discriminated visually and linguistically from other characters, in Kanji character discrimination, we hypothesized that frontal event-related potential (ERP) waveforms reflect two discrimination processes in separate time periods: one based on visual analysis and the other based on lexcical access. To examine this hypothesis, we recorded ERPs while performing a Kanji lexical decision task. In this task, either a known Kanji character, an unknown Kanji character or a symbol was presented and the subject had to report if the presented character was a known Kanji character for the subject or not. The same response was required for unknown Kanji trials and symbol trials. As a preprocessing of signals, we examined the performance of a method using independent component analysis for artifact rejection and found it was effective. Therefore we used it. In the ERP results, there were two time periods in which the frontal ERP wavefoms were significantly different betweeen the unknown Kanji trials and the symbol trials: around 170ms and around 300ms after stimulus onset. This result supported our hypothesis. In addition, the result suggests that Kanji character lexical access may be fully completed by around 260ms after stimulus onset.
148
2989
Design of MBMS Client Functions in the Mobile
Abstract:
MBMS is a unidirectional point-to-multipoint bearer service in which data are transmitted from a single source entity to multiple recipients. For a mobile to support the MBMS, MBMS client functions as well as MBMS radio protocols should be designed and implemented. In this paper, we analyze the MBMS client functions and describe the implementation of them in our mobile test-bed. User operations and signaling flows between protocol entities to control the MBMS functions are designed in detail. Service announcement utilizing the file download MBMS service and four MBMS user services are demonstrated in the test-bed to verify the MBMS client functions.
149
163
A High-Frequency Low-Power Low-Pass-Filter-Based All-Current-Mirror Sinusoidal Quadrature Oscillator
Abstract:
A high-frequency low-power sinusoidal quadrature oscillator is presented through the use of two 2nd-order low-pass current-mirror (CM)-based filters, a 1st-order CM low-pass filter and a CM bilinear transfer function. The technique is relatively simple based on (i) inherent time constants of current mirrors, i.e. the internal capacitances and the transconductance of a diode-connected NMOS, (ii) a simple negative resistance RN formed by a resistor load RL of a current mirror. Neither external capacitances nor inductances are required. As a particular example, a 1.9-GHz, 0.45-mW, 2-V CMOS low-pass-filter-based all-current-mirror sinusoidal quadrature oscillator is demonstrated. The oscillation frequency (f0) is 1.9 GHz and is current-tunable over a range of 370 MHz or 21.6 %. The power consumption is at approximately 0.45 mW. The amplitude matching and the quadrature phase matching are better than 0.05 dB and 0.15°, respectively. Total harmonic distortions (THD) are less than 0.3 %. At 2 MHz offset from the 1.9 GHz, the carrier to noise ratio (CNR) is 90.01 dBc/Hz whilst the figure of merit called a normalized carrier-to-noise ratio (CNRnorm) is 153.03 dBc/Hz. The ratio of the oscillation frequency (f0) to the unity-gain frequency (fT) of a transistor is 0.25. Comparisons to other approaches are also included.
150
5308
Liveness Detection for Embedded Face Recognition System
Abstract:
To increase reliability of face recognition system, the system must be able to distinguish real face from a copy of face such as a photograph. In this paper, we propose a fast and memory efficient method of live face detection for embedded face recognition system, based on the analysis of the movement of the eyes. We detect eyes in sequential input images and calculate variation of each eye region to determine whether the input face is a real face or not. Experimental results show that the proposed approach is competitive and promising for live face detection.
151
651
The Application of Hadamard Matrixes in the SNR Enhancement of Optical Time-Domain Reflectometry(OTDR)
Abstract:
Results in one field necessarily give insight into the others, and all have much potential for scientific and technological application. The Hadamard-transform technique once been applied to the spectrometry also has its use in the SNR Enhancement of OTDR. In this report, a new set of code (Simplex-codes) is discussed and where the addition gain of SNR come from is implied.
152
6838
Simulation and Measurement the Radiation of an Antenna inside a Metallic Case using FDTD
Abstract:
In this paper we have developed a FDTD simulation code which can treat wave propagation of a monopole antenna in a metallic case which covers with PML, and performed a series of three dimensional FDTD simulations of electromagnetic wave propagation in this space .We also provide a measurement set up in antenna lab and fortunately the simulations and measurements show good agreement. According to simulation and measurement results, we confirmed that the computer program which had been written in FORTRAN, works correctly.
153
6443
The Tag Authentication Scheme using Self-Shrinking Generator on RFID System
Abstract:
Since communications between tag and reader in RFID system are by radio, anyone can access the tag and obtain its any information. And a tag always replies with the same ID so that it is hard to distinguish between a real and a fake tag. Thus, there are many security problems in today-s RFID System. Firstly, unauthorized reader can easily read the ID information of any Tag. Secondly, Adversary can easily cheat the legitimate reader using the collected Tag ID information, such as the any legitimate Tag. These security problems can be typically solved by encryption of messages transmitted between Tag and Reader and by authentication for Tag. In this paper, to solve these security problems on RFID system, we propose the Tag Authentication Scheme based on self shrinking generator (SSG). SSG Algorithm using in our scheme is proposed by W.Meier and O.Staffelbach in EUROCRYPT-94. This Algorithm is organized that only one LFSR and selection logic in order to generate random stream. Thus it is optimized to implement the hardware logic on devices with extremely limited resource, and the output generating from SSG at each time do role as random stream so that it is allow our to design the light-weight authentication scheme with security against some network attacks. Therefore, we propose the novel tag authentication scheme which use SSG to encrypt the Tag-ID transmitted from tag to reader and achieve authentication of tag.
154
711
A Wireless Secure Remote Access Architecture Implementing Role Based Access Control: WiSeR
Abstract:
In this study, we propose a network architecture for providing secure access to information resources of enterprise network from remote locations in a wireless fashion. Our proposed architecture offers a very promising solution for organizations which are in need of a secure, flexible and cost-effective remote access methodology. Security of the proposed architecture is based on Virtual Private Network technology and a special role based access control mechanism with location and time constraints. The flexibility mainly comes from the use of Internet as the communication medium and cost-effectiveness is due to the possibility of in-house implementation of the proposed architecture.
155
3094
An Approach to Solving a Permutation Problem of Frequency Domain Independent Component Analysis for Blind Source Separation of Speech Signals
Abstract:
Independent component analysis (ICA) in the frequency domain is used for solving the problem of blind source separation (BSS). However, this method has some problems. For example, a general ICA algorithm cannot determine the permutation of signals which is important in the frequency domain ICA. In this paper, we propose an approach to the solution for a permutation problem. The idea is to effectively combine two conventional approaches. This approach improves the signal separation performance by exploiting features of the conventional approaches. We show the simulation results using artificial data.
156
7220
Quality of Service in Multioperator GPON Access Networks with Triple-Play Services
Abstract:
Recently, in some places, optical-fibre access networks have been used with GPON technology belonging to organizations (in most cases public bodies) that act as neutral operators. These operators simultaneously provide network services to various telecommunications operators that offer integrated voice, data and television services. This situation creates new problems related to quality of service, since the interests of the users are intermingled with the interests of the operators. In this paper, we analyse this problem and consider solutions that make it possible to provide guaranteed quality of service for voice over IP, data services and interactive digital television.
157
362
Towards an AS Level Network Performance Model
Abstract:
In order to research Internet quantificationally and better model the performance of network, this paper proposes a novel AS level network performance model (MNPM), it takes autonomous system (AS) as basic modeling unit, measures E2E performance between any two outdegrees of an AS and organizes measurement results into matrix form which called performance matrix (PM). Inter-AS performance calculation is defined according to performance information stored in PM. Simulation has been implemented to verify the correctness of MNPM and a practical application of MNPM (network congestion detection) is given.
158
11387
The Effect of Different Compression Schemes on Speech Signals
Abstract:
This paper studies the effect of different compression constraints and schemes presented in a new and flexible paradigm to achieve high compression ratios and acceptable signal to noise ratios of Arabic speech signals. Compression parameters are computed for variable frame sizes of a level 5 to 7 Discrete Wavelet Transform (DWT) representation of the signals for different analyzing mother wavelet functions. Results are obtained and compared for Global threshold and level dependent threshold techniques. The results obtained also include comparisons with Signal to Noise Ratios, Peak Signal to Noise Ratios and Normalized Root Mean Square Error.
159
3251
Application of ESA in the CAVE Mode Authentication
Abstract:
This paper proposes the authentication method using ESA algorithm instead of using CAVE algorithm in the CDMA mobile communication systems including IS-95 and CDMA2000 1x. And, we analyze to apply ESA mechanism on behalf of CAVE mechanism without the change of message format and air interface in the existing CDMA systems. If ESA algorithm can be used as the substitution of CAVE algorithm, security strength of authentication algorithm is intensified without protocol change. An algorithm replacement proposed in this paper is not to change an authentication mechanism, but to configure input of ESA algorithm and to produce output. Therefore, our proposal can be the compatible to the existing systems.
160
15544
Improvements in Navy Data Networks and Tactical Communication Systems
Abstract:
This paper considers the benefits gained by using an efficient quality of service management such as DiffServ technique to improve the performance of military communications. Low delay and no blockage must be achieved especially for real time tactical data. All traffic flows generated by different applications do not need same bandwidth, same latency, same error ratio and this scalable technique of packet management based on priority levels is analysed. End to end architectures supporting various traffic flows and including lowbandwidth and high-delay HF or SHF military links as well as unprotected Internet sub domains are studied. A tuning of Diffserv parameters is proposed in accordance with different loads of various traffic and different operational situations.
161
10742
Bandwidth, Area Efficient and Target Device Independent DDR SDRAM Controller
Abstract:
The application of the synchronous dynamic random access memory (SDRAM) has gone beyond the scope of personal computers for quite a long time. It comes into hand whenever a big amount of low price and still high speed memory is needed. Most of the newly developed stand alone embedded devices in the field of image, video and sound processing take more and more use of it. The big amount of low price memory has its trade off – the speed. In order to take use of the full potential of the memory, an efficient controller is needed. Efficient stands for maximum random accesses to the memory both for reading and writing and less area after implementation. This paper proposes a target device independent DDR SDRAM pipelined controller and provides performance comparison with available solutions.
162
4485
Air-Filled Circular Cross Sectional Cavity for Microwave Non-Destructive Testing
Abstract:
Dielectric sheet perturbation to the dominant TE111 mode resonant frequency of a circular cavity is studied and presented in this paper. The dielectric sheet, placed at the middle of the airfilled cavity, introduces discontinuities and disturbs the configuration of electromagnetic fields in the cavity. For fixed dimensions of cavity and fixed thickness of the loading dielectric, the dominant resonant frequency varies quite linearly with the permittivity of the dielectric. This quasi-linear relationship is plotted using Maple software and verified using 3D electromagnetic simulations. Two probes are used in the simulation for wave excitation into and from the cavity. The best length of probe is found to be 3 mm, giving the closest resonant frequency to the one calculated using Maple. A total of fourteen different dielectrics of permittivity ranging from 1 to 12.9 are tested one by one in the simulation. The works show very close agreement between the results from Maple and the simulation. A constant difference of 0.04 GHz is found between the resonant frequencies collected during simulation and the ones from Maple. The success of this project may lead to the possibility of using the middle loaded cavity at TE111 mode as a microwave non-destructive testing of solid materials.
163
5202
Application of Genetic Algorithms to Feature Subset Selection in a Farsi OCR
Abstract:
Dealing with hundreds of features in character recognition systems is not unusual. This large number of features leads to the increase of computational workload of recognition process. There have been many methods which try to remove unnecessary or redundant features and reduce feature dimensionality. Besides because of the characteristics of Farsi scripts, it-s not possible to apply other languages algorithms to Farsi directly. In this paper some methods for feature subset selection using genetic algorithms are applied on a Farsi optical character recognition (OCR) system. Experimental results show that application of genetic algorithms (GA) to feature subset selection in a Farsi OCR results in lower computational complexity and enhanced recognition rate.
164
3834
Effective Software-Based Solution for Processing Mass Downstream Data in Interactive Push VOD System
Abstract:
Interactive push VOD system is a new kind of system that incorporates push technology and interactive technique. It can push movies to users at high speeds at off-peak hours for optimal network usage so as to save bandwidth. This paper presents effective software-based solution for processing mass downstream data at terminals of interactive push VOD system, where the service can download movie according to a viewer-s selection. The downstream data is divided into two catalogs: (1) the carousel data delivered according to DSM-CC protocol; (2) IP data delivered according to Euro-DOCSIS protocol. In order to accelerate download speed and reduce data loss rate at terminals, this software strategy introduces caching, multi-thread and resuming mechanisms. The experiments demonstrate advantages of the software-based solution.
165
7014
Modeling “Web of Trust“ with Web 2.0
Abstract:
“Web of Trust" is one of the recognized goals for Web 2.0. It aims to make it possible for the people to take responsibility for what they publish on the web, including organizations, businesses and individual users. These objectives, among others, drive most of the technologies and protocols recently standardized by the governing bodies. One of the great advantages of Web infrastructure is decentralization of publication. The primary motivation behind Web 2.0 is to assist the people to add contents for Collective Intelligence (CI) while providing mechanisms to link content with people for evaluations and accountability of information. Such structure of contents will interconnect users and contents so that users can use contents to find participants and vice versa. This paper proposes conceptual information storage and linking model, based on decentralized information structure, that links contents and people together. The model uses FOAF, Atom, RDF and RDFS and can be used as a blueprint to develop Web 2.0 applications for any e-domain. However, primary target for this paper is online trust evaluation domain. The proposed model targets to assist the individuals to establish “Web of Trust" in online trust domain.
166
15494
A 1.5V,100MS/s,12-bit Current-Mode CMOSS ample-and-Hold Circuit
Abstract:
A high-linearity and high-speed current-mode sampleand- hold circuit is designed and simulated using a 0.25μm CMOS technology. This circuit design is based on low voltage and it utilizes a fully differential circuit. Due to the use of only two switches the switch related noise has been reduced. Signal - dependent -error is completely eliminated by a new zero voltage switching technique. The circuit has a linearity error equal to ±0.05μa, i.e. 12-bit accuracy with a ±160 μa differential output - input signal frequency of 5MHZ, and sampling frequency of 100 MHZ. Third harmonic is equal to –78dB.
167
15012
Design of an SNMP Agent for OSGi Service Platforms
Abstract:
On one hand, SNMP (Simple Network Management Protocol) allows integrating different enterprise elements connected through Internet into a standardized remote management. On the other hand, as a consequence of the success of Intelligent Houses they can be connected through Internet now by means of a residential gateway according to a common standard called OSGi (Open Services Gateway initiative). Due to the specifics of OSGi Service Platforms and their dynamic nature, specific design criterions should be defined to implement SNMP Agents for OSGi in order to integrate them into the SNMP remote management. Based on the analysis of the relation between both standards (SNMP and OSGi), this paper shows how OSGi Service Platforms can be included into the SNMP management of a global enterprise, giving implementation details about an SNMP Agent solution and the definition of a new MIB (Management Information Base) for managing OSGi platforms that takes into account the specifics and dynamic nature of OSGi.
168
2488
Demand and Price Evolution Forecasting as Tools for Facilitating the RoadMapping Process of the Photonic Component Industry
Abstract:
The photonic component industry is a highly innovative industry with a large value chain. In order to ensure the growth of the industry much effort must be devoted to road mapping activities. In such activities demand and price evolution forecasting tools can prove quite useful in order to help in the roadmap refinement and update process. This paper attempts to provide useful guidelines in roadmapping of optical components and considers two models based on diffusion theory and the extended learning curve for demand and price evolution forecasting.
169
629
Partial 3D Reconstruction using Evolutionary Algorithms
Abstract:
When reconstructing a scenario, it is necessary to know the structure of the elements present on the scene to have an interpretation. In this work we link 3D scenes reconstruction to evolutionary algorithms through the vision stereo theory. We consider vision stereo as a method that provides the reconstruction of a scene using only a couple of images of the scene and performing some computation. Through several images of a scene, captured from different positions, vision stereo can give us an idea about the threedimensional characteristics of the world. Vision stereo usually requires of two cameras, making an analogy to the mammalian vision system. In this work we employ only a camera, which is translated along a path, capturing images every certain distance. As we can not perform all computations required for an exhaustive reconstruction, we employ an evolutionary algorithm to partially reconstruct the scene in real time. The algorithm employed is the fly algorithm, which employ “flies" to reconstruct the principal characteristics of the world following certain evolutionary rules.
170
5467
Face Tracking using a Polling Strategy
Abstract:
The colors of the human skin represent a special category of colors, because they are distinctive from the colors of other natural objects. This category is found as a cluster in color spaces, and the skin color variations between people are mostly due to differences in the intensity. Besides, the face detection based on skin color detection is a faster method as compared to other techniques. In this work, we present a system to track faces by carrying out skin color detection in four different color spaces: HSI, YCbCr, YES and RGB. Once some skin color regions have been detected for each color space, we label each and get some characteristics such as size and position. We are supposing that a face is located in one the detected regions. Next, we compare and employ a polling strategy between labeled regions to determine the final region where the face effectively has been detected and located.
171
11060
Modeling of Crude Oil Blending via Discrete-Time Neural Networks
Abstract:
Crude oil blending is an important unit operation in petroleum refining industry. A good model for the blending system is beneficial for supervision operation, prediction of the export petroleum quality and realizing model-based optimal control. Since the blending cannot follow the ideal mixing rule in practice, we propose a static neural network to approximate the blending properties. By the dead-zone approach, we propose a new robust learning algorithm and give theoretical analysis. Real data of crude oil blending is applied to illustrate the neuro modeling approach.
172
9639
MAYA SEMANTIC TECHNIQUE: A Mathematical Technique Used to Determine Partial Semantics for Declarative Sentences
Abstract:
This research uses computational linguistics, an area of study that employs a computer to process natural language, and aims at discerning the patterns that exist in declarative sentences used in technical texts. The approach is mathematical, and the focus is on instructional texts found on web pages. The technique developed by the author and named the MAYA Semantic Technique is used here and organized into four stages. In the first stage, the parts of speech in each sentence are identified. In the second stage, the subject of the sentence is determined. In the third stage, MAYA performs a frequency analysis on the remaining words to determine the verb and its object. In the fourth stage, MAYA does statistical analysis to determine the content of the web page. The advantage of the MAYA Semantic Technique lies in its use of mathematical principles to represent grammatical operations which assist processing and accuracy if performed on unambiguous text. The MAYA Semantic Technique is part of a proposed architecture for an entire web-based intelligent tutoring system. On a sample set of sentences, partial semantics derived using the MAYA Semantic Technique were approximately 80% accurate. The system currently processes technical text in one domain, namely Cµ programming. In this domain all the keywords and programming concepts are known and understood.
173
15692
A Novel Approach to Fault Classification and Fault Location for Medium Voltage Cables Based on Artificial Neural Network
Abstract:
A novel application of neural network approach to fault classification and fault location of Medium voltage cables is demonstrated in this paper. Different faults on a protected cable should be classified and located correctly. This paper presents the use of neural networks as a pattern classifier algorithm to perform these tasks. The proposed scheme is insensitive to variation of different parameters such as fault type, fault resistance, and fault inception angle. Studies show that the proposed technique is able to offer high accuracy in both of the fault classification and fault location tasks.
174
2190
Estimating an Optimal Neighborhood Size in the Spherical Self-Organizing Feature Map
Abstract:
This article presents a short discussion on optimum neighborhood size selection in a spherical selforganizing feature map (SOFM). A majority of the literature on the SOFMs have addressed the issue of selecting optimal learning parameters in the case of Cartesian topology SOFMs. However, the use of a Spherical SOFM suggested that the learning aspects of Cartesian topology SOFM are not directly translated. This article presents an approach on how to estimate the neighborhood size of a spherical SOFM based on the data. It adopts the L-curve criterion, previously suggested for choosing the regularization parameter on problems of linear equations where their right-hand-side is contaminated with noise. Simulation results are presented on two artificial 4D data sets of the coupled Hénon-Ikeda map.
175
3276
Effective Sonar Target Classification via Parallel Structure of Minimal Resource Allocation Network
Abstract:
In this paper, the processing of sonar signals has been carried out using Minimal Resource Allocation Network (MRAN) and a Probabilistic Neural Network (PNN) in differentiation of commonly encountered features in indoor environments. The stability-plasticity behaviors of both networks have been investigated. The experimental result shows that MRAN possesses lower network complexity but experiences higher plasticity than PNN. An enhanced version called parallel MRAN (pMRAN) is proposed to solve this problem and is proven to be stable in prediction and also outperformed the original MRAN.
176
274
An Efficient Feature Extraction Algorithm for the Recognition of Handwritten Arabic Digits
Abstract:
In this paper, an efficient structural approach for recognizing on-line handwritten digits is proposed. After reading the digit from the user, the slope is estimated and normalized for adjacent nodes. Based on the changing of signs of the slope values, the primitives are identified and extracted. The names of these primitives are represented by strings, and then a finite state machine, which contains the grammars of the digits, is traced to identify the digit. Finally, if there is any ambiguity, it will be resolved. Experiments showed that this technique is flexible and can achieve high recognition accuracy for the shapes of the digits represented in this work.
177
15663
Restoration of Noisy Document Images with an Efficient Bi-Level Adaptive Thresholding
Authors:
Abstract:
An effective approach for extracting document images from a noisy background is introduced. The entire scheme is divided into three sub- stechniques – the initial preprocessing operations for noise cluster tightening, introduction of a new thresholding method by maximizing the ratio of stan- dard deviations of the combined effect on the image to the sum of weighted classes and finally the image restoration phase by image binarization utiliz- ing the proposed optimum threshold level. The proposed method is found to be efficient compared to the existing schemes in terms of computational complexity as well as speed with better noise rejection.
178
7090
A PSO-based End-Member Selection Method for Spectral Unmixing of Multispectral SatelliteImages
Abstract:
An end-member selection method for spectral unmixing that is based on Particle Swarm Optimization (PSO) is developed in this paper. The algorithm uses the K-means clustering algorithm and a method of dynamic selection of end-members subsets to find the appropriate set of end-members for a given set of multispectral images. The proposed algorithm has been successfully applied to test image sets from various platforms such as LANDSAT 5 MSS and NOAA's AVHRR. The experimental results of the proposed algorithm are encouraging. The influence of different values of the algorithm control parameters on performance is studied. Furthermore, the performance of different versions of PSO is also investigated.
179
12429
Distributional Semantics Approach to Thai Word Sense Disambiguation
Abstract:

Word sense disambiguation is one of the most important open problems in natural language processing applications such as information retrieval and machine translation. Many approach strategies can be employed to resolve word ambiguity with a reasonable degree of accuracy. These strategies are: knowledgebased, corpus-based, and hybrid-based. This paper pays attention to the corpus-based strategy that employs an unsupervised learning method for disambiguation. We report our investigation of Latent Semantic Indexing (LSI), an information retrieval technique and unsupervised learning, to the task of Thai noun and verbal word sense disambiguation. The Latent Semantic Indexing has been shown to be efficient and effective for Information Retrieval. For the purposes of this research, we report experiments on two Thai polysemous words, namely  /hua4/ and /kep1/ that are used as a representative of Thai nouns and verbs respectively. The results of these experiments demonstrate the effectiveness and indicate the potential of applying vector-based distributional information measures to semantic disambiguation.

180
3799
Meta Random Forests
Abstract:
Leo Breimans Random Forests (RF) is a recent development in tree based classifiers and quickly proven to be one of the most important algorithms in the machine learning literature. It has shown robust and improved results of classifications on standard data sets. Ensemble learning algorithms such as AdaBoost and Bagging have been in active research and shown improvements in classification results for several benchmarking data sets with mainly decision trees as their base classifiers. In this paper we experiment to apply these Meta learning techniques to the random forests. We experiment the working of the ensembles of random forests on the standard data sets available in UCI data sets. We compare the original random forest algorithm with their ensemble counterparts and discuss the results.
181
15086
Modeling Language for Constructing Solvers in Machine Learning : Reductionist Perspectives
Abstract:
For a given specific problem an efficient algorithm has been the matter of study. However, an alternative approach orthogonal to this approach comes out, which is called a reduction. In general for a given specific problem this reduction approach studies how to convert an original problem into subproblems. This paper proposes a formal modeling language to support this reduction approach in order to make a solver quickly. We show three examples from the wide area of learning problems. The benefit is a fast prototyping of algorithms for a given new problem. It is noted that our formal modeling language is not intend for providing an efficient notation for data mining application, but for facilitating a designer who develops solvers in machine learning.
182
15020
Wavelet based ANN Approach for Transformer Protection
Abstract:
This paper presents the development of a wavelet based algorithm, for distinguishing between magnetizing inrush currents and power system fault currents, which is quite adequate, reliable, fast and computationally efficient tool. The proposed technique consists of a preprocessing unit based on discrete wavelet transform (DWT) in combination with an artificial neural network (ANN) for detecting and classifying fault currents. The DWT acts as an extractor of distinctive features in the input signals at the relay location. This information is then fed into an ANN for classifying fault and magnetizing inrush conditions. A 220/55/55 V, 50Hz laboratory transformer connected to a 380 V power system were simulated using ATP-EMTP. The DWT was implemented by using Matlab and Coiflet mother wavelet was used to analyze primary currents and generate training data. The simulated results presented clearly show that the proposed technique can accurately discriminate between magnetizing inrush and fault currents in transformer protection.
183
15438
A Comparison of Grey Model and Fuzzy Predictive Model for Time Series
Abstract:
The prediction of meteorological parameters at a meteorological station is an interesting and open problem. A firstorder linear dynamic model GM(1,1) is the main component of the grey system theory. The grey model requires only a few previous data points in order to make a real-time forecast. In this paper, we consider the daily average ambient temperature as a time series and the grey model GM(1,1) applied to local prediction (short-term prediction) of the temperature. In the same case study we use a fuzzy predictive model for global prediction. We conclude the paper with a comparison between local and global prediction schemes.
184
13213
Genetic-Based Planning with Recursive Subgoals
Abstract:
In this paper, we introduce an effective strategy for subgoal division and ordering based upon recursive subgoals and combine this strategy with a genetic-based planning approach. This strategy can be applied to domains with conjunctive goals. The main idea is to recursively decompose a goal into a set of serializable subgoals and to specify a strict ordering among the subgoals. Empirical results show that the recursive subgoal strategy reduces the size of the search space and improves the quality of solutions to planning problems.
185
10551
Chose the Right Mutation Rate for Better Evolve Combinational Logic Circuits
Abstract:
Evolvable hardware (EHW) is a developing field that applies evolutionary algorithm (EA) to automatically design circuits, antennas, robot controllers etc. A lot of research has been done in this area and several different EAs have been introduced to tackle numerous problems, as scalability, evolvability etc. However every time a specific EA is chosen for solving a particular task, all its components, such as population size, initialization, selection mechanism, mutation rate, and genetic operators, should be selected in order to achieve the best results. In the last three decade the selection of the right parameters for the EA-s components for solving different “test-problems" has been investigated. In this paper the behaviour of mutation rate for designing logic circuits, which has not been done before, has been deeply analyzed. The mutation rate for an EHW system modifies the number of inputs of each logic gates, the functionality (for example from AND to NOR) and the connectivity between logic gates. The behaviour of the mutation has been analyzed based on the number of generations, genotype redundancy and number of logic gates for the evolved circuits. The experimental results found provide the behaviour of the mutation rate during evolution for the design and optimization of simple logic circuits. The experimental results propose the best mutation rate to be used for designing combinational logic circuits. The research presented is particular important for those who would like to implement a dynamic mutation rate inside the evolutionary algorithm for evolving digital circuits. The researches on the mutation rate during the last 40 years are also summarized.
186
15769
Effective Collaboration in Product Development via a Common Sharable Ontology
Abstract:
To achieve competitive advantage nowadays, most of the industrial companies are considering that success is sustained to great product development. That is to manage the product throughout its entire lifetime ranging from design, manufacture, operation and destruction. Achieving this goal requires a tight collaboration between partners from a wide variety of domains, resulting in various product data types and formats, as well as different software tools. So far, the lack of a meaningful unified representation for product data semantics has slowed down efficient product development. This paper proposes an ontology based approach to enable such semantic interoperability. Generic and extendible product ontology is described, gathering main concepts pertaining to the mechanical field and the relations that hold among them. The ontology is not exhaustive; nevertheless, it shows that such a unified representation is possible and easily exploitable. This is illustrated thru a case study with an example product and some semantic requests to which the ontology responds quite easily. The study proves the efficiency of ontologies as a support to product data exchange and information sharing, especially in product development environments where collaboration is not just a choice but a mandatory prerequisite.
187
10647
A Intelligent Inference Model about Complex Systems- Stability: Inspiration from Nature
Abstract:
A logic model for analyzing complex systems- stability is very useful to many areas of sciences. In the real world, we are enlightened from some natural phenomena such as “biosphere", “food chain", “ecological balance" etc. By research and practice, and taking advantage of the orthogonality and symmetry defined by the theory of multilateral matrices, we put forward a logic analysis model of stability of complex systems with three relations, and prove it by means of mathematics. This logic model is usually successful in analyzing stability of a complex system. The structure of the logic model is not only clear and simple, but also can be easily used to research and solve many stability problems of complex systems. As an application, some examples are given.
188
10088
RB-Matcher: String Matching Technique
Abstract:
All Text processing systems allow their users to search a pattern of string from a given text. String matching is fundamental to database and text processing applications. Every text editor must contain a mechanism to search the current document for arbitrary strings. Spelling checkers scan an input text for words in the dictionary and reject any strings that do not match. We store our information in data bases so that later on we can retrieve the same and this retrieval can be done by using various string matching algorithms. This paper is describing a new string matching algorithm for various applications. A new algorithm has been designed with the help of Rabin Karp Matcher, to improve string matching process.
189
108
The Nanobiotechnology of Obtaining of Collagen Gels from Marin Fish Skin and Yours Reological Properties for using Like New Materials in Dental Medicine
Abstract:
This paper aims at presenting the biotechnology used to obtain collagen-based gels from shark (Squalus acanthias) and brill skin, marine fish growing in the Black Sea. Due to the structure of its micro-fibres, collagen can be considered a nanomaterial; in order to use collagen-based matrixes as biomaterial, rheological studies must be performed first, to state whether they are stable or not. For the triple-helix structure to remain stable within these gels at room or human body temperature, they must be stabilized by reticulation.
190
4681
Modelling Multiagent Systems
Abstract:
We propose a formal framework for the specification of the behavior of a system of agents, as well as those of the constituting agents. This framework allows us to model each agent-s effectoric capability including its interactions with the other agents. We also provide an algorithm based on Milner-s "observation equivalence" to derive an agent-s perception of its task domain situations from its effectoric capability, and use "system computations" to model the coordinated efforts of the agents in the system . Formal definitions of the concept of "behavior equivalence" of two agents and that of system computations equivalence for an agent are also provided.
191
10738
Estimating Word Translation Probabilities for Thai – English Machine Translation using EM Algorithm
Abstract:
Selecting the word translation from a set of target language words, one that conveys the correct sense of source word and makes more fluent target language output, is one of core problems in machine translation. In this paper we compare the 3 methods of estimating word translation probabilities for selecting the translation word in Thai – English Machine Translation. The 3 methods are (1) Method based on frequency of word translation, (2) Method based on collocation of word translation, and (3) Method based on Expectation Maximization (EM) algorithm. For evaluation we used Thai – English parallel sentences generated by NECTEC. The method based on EM algorithm is the best method in comparison to the other methods and gives the satisfying results.
192
15004
Neural Networks: From Black Box towards Transparent Box Application to Evapotranspiration Modeling
Abstract:
Neural networks are well known for their ability to model non linear functions, but as statistical methods usually does, they use a no parametric approach thus, a priori knowledge is not obvious to be taken into account no more than the a posteriori knowledge. In order to deal with these problematics, an original way to encode the knowledge inside the architecture is proposed. This method is applied to the problem of the evapotranspiration inside karstic aquifer which is a problem of huge utility in order to deal with water resource.
193
1730
Accuracy of Divergence Measures for Detection of Abrupt Changes
Authors:
Abstract:
Numerous divergence measures (spectral distance, cepstral distance, difference of the cepstral coefficients, Kullback-Leibler divergence, distance given by the General Likelihood Ratio, distance defined by the Recursive Bayesian Changepoint Detector and the Mahalanobis measure) are compared in this study. The measures are used for detection of abrupt spectral changes in synthetic AR signals via the sliding window algorithm. Two experiments are performed; the first is focused on detection of single boundary while the second concentrates on detection of a couple of boundaries. Accuracy of detection is judged for each method; the measures are compared according to results of both experiments.
194
2998
Distinguishing Innocent Murmurs from Murmurs caused by Aortic Stenosis by Recurrence Quantification Analysis
Abstract:
It is sometimes difficult to differentiate between innocent murmurs and pathological murmurs during auscultation. In these difficult cases, an intelligent stethoscope with decision support abilities would be of great value. In this study, using a dog model, phonocardiographic recordings were obtained from 27 boxer dogs with various degrees of aortic stenosis (AS) severity. As a reference for severity assessment, continuous wave Doppler was used. The data were analyzed with recurrence quantification analysis (RQA) with the aim to find features able to distinguish innocent murmurs from murmurs caused by AS. Four out of eight investigated RQA features showed significant differences between innocent murmurs and pathological murmurs. Using a plain linear discriminant analysis classifier, the best pair of features (recurrence rate and entropy) resulted in a sensitivity of 90% and a specificity of 88%. In conclusion, RQA provide valid features which can be used for differentiation between innocent murmurs and murmurs caused by AS.
195
13965
Computation of the Filtering Properties of Photonic Crystal Waveguide Discontinuities Using the Mode Matching Method
Abstract:
In this paper, the application of the Mode Matching (MM) method in the case of photonic crystal waveguide discontinuities is presented. The structure under consideration is divided into a number of cells, which supports a number of guided and evanescent modes. These modes can be calculated numerically by an alternative formulation of the plane wave expansion method for each frequency. A matrix equation is then formed relating the modal amplitudes at the beginning and at the end of the structure. The theory is highly efficient and accurate and can be applied to study the transmission sensitivity of photonic crystal devices due to fabrication tolerances. The accuracy of the MM method is compared to the Finite Difference Frequency Domain (FDFD) and the Adjoint Variable Method (AVM) and good agreement is observed.
196
3783
Statistical Evaluation of Nonlinear Distortion using the Multi-Canonical Monte Carlo Method and the Split Step Fourier Method
Abstract:
In high powered dense wavelength division multiplexed (WDM) systems with low chromatic dispersion, four-wave mixing (FWM) can prove to be a major source of noise. The MultiCanonical Monte Carlo Method (MCMC) and the Split Step Fourier Method (SSFM) are combined to accurately evaluate the probability density function of the decision variable of a receiver, limited by FWM. The combination of the two methods leads to more accurate results, and offers the possibility of adding other optical noises such as the Amplified Spontaneous Emission (ASE) noise.
197
12563
State Feedback Controller Design via Takagi- Sugeno Fuzzy Model : LMI Approach
Abstract:
In this paper, we introduce a robust state feedback controller design using Linear Matrix Inequalities (LMIs) and guaranteed cost approach for Takagi-Sugeno fuzzy systems. The purpose on this work is to establish a systematic method to design controllers for a class of uncertain linear and non linear systems. Our approach utilizes a certain type of fuzzy systems that are based on Takagi-Sugeno (T-S) fuzzy models to approximate nonlinear systems. We use a robust control methodology to design controllers. This method not only guarantees stability, but also minimizes an upper bound on a linear quadratic performance measure. A simulation example is presented to show the effectiveness of this method.
198
4751
Idiopathic Constipation can be Subdivided in Clinical Subtypes: Data Mining by Cluster Analysis on a Population based Study
Abstract:
The prevalence of non organic constipation differs from country to country and the reliability of the estimate rates is uncertain. Moreover, the clinical relevance of subdividing the heterogeneous functional constipation disorders into pre-defined subgroups is largely unknown.. Aim: to estimate the prevalence of constipation in a population-based sample and determine whether clinical subgroups can be identified. An age and gender stratified sample population from 5 Italian cities was evaluated using a previously validated questionnaire. Data mining by cluster analysis was used to determine constipation subgroups. Results: 1,500 complete interviews were obtained from 2,083 contacted households (72%). Self-reported constipation correlated poorly with symptombased constipation found in 496 subjects (33.1%). Cluster analysis identified four constipation subgroups which correlated to subgroups identified according to pre-defined symptom criteria. Significant differences in socio-demographics and lifestyle were observed among subgroups.